0

我正在计算椭圆体表面上的卫星覆盖范围,我的函数返回一个纬度/经度列表,如下所示。它是一个 python 字典列表。现在,如果我在 Matlab 或 Matplotlib 中散点图,我会得到一个很好的断开点的 3D 足迹。但是,我希望能够使用 plot(不是 scatter)命令来创建一个平滑的 3D 圆来表示足迹。为了做到这一点,我需要以某种方式对它们进行排序。我已经尝试过Haversine(最大圆距离)来为每个点找到最近的邻居,但是当我有一组更大的值(GEO sats)时,这仍然会给我偶尔断开的线。当足迹跨越赤道时,我还尝试将值拆分为 N 和 S 纬度,然后按经度排序。一世'

latLons = [{'lat': -33.783781327, 'lon': 137.47747747700001}, {'lat': -33.783781326899998, 'lon': 139.63963964000001}, {'lat': -33.603601166200001, 'lon': 136.03603603600001}, {'lat': -33.423421005500003, 'lon': 134.59459459499999}, {'lat': -32.882880523399997, 'lon': 132.43243243200001}, {'lat': -32.522520202199999, 'lon': 131.71171171200001}, {'lat': -32.342340041600004, 'lon': 145.40540540500001}, {'lat': -31.261259078399998, 'lon': 147.56756756799999}, {'lat': -31.081078917799999, 'lon': 128.828828829}, {'lat': -29.459457473099999, 'lon': 126.666666667}, {'lat': -28.558556670200002, 'lon': 125.94594594599999}, {'lat': -27.657655866700001, 'lon': 125.225225225}, {'lat': -26.936935223300001, 'lon': 151.89189189199999}, {'lat': -26.7567550624, 'lon': 124.504504504}, {'lat': -25.6756740961, 'lon': 152.61261261300001}, {'lat': -25.3153137736, 'lon': 123.78378378399999}, {'lat': -23.873872481599999, 'lon': 153.33333333300001}, {'lat': -23.333331995999998, 'lon': 123.063063063}, {'lat': -19.3693684138, 'lon': 154.05405405400001}, {'lat': -15.765765115600001, 'lon': 123.063063063}, {'lat': -15.2252246167, 'lon': 153.33333333300001}, {'lat': -13.243242777300001, 'lon': 152.61261261300001}, {'lat': -12.162161767000001, 'lon': 124.504504505}, {'lat': -11.801801428999999, 'lon': 151.89189189199999}, {'lat': -10.9009005815, 'lon': 125.225225225}, {'lat': -8.1981980155999992, 'lon': 149.00900900900001}, {'lat': -6.9369368056800003, 'lon': 147.56756756799999}, {'lat': -6.5765764584799999, 'lon': 129.54954954999999}, {'lat': -6.5765764584799999, 'lon': 146.84684684699999}, {'lat': -5.6756755875199998, 'lon': 130.99099099099999}, {'lat': -4.7747747122700002, 'lon': 143.24324324299999}, {'lat': -4.23423418502, 'lon': 141.08108108100001}, {'lat': -3.8738738326600002, 'lon': 138.198198198}]
4

2 回答 2

1

一种方法是在极坐标中相对于中心点表示您的点,并使用角度作为排序键。

这是一个简单的实现:

import matplotlib.pyplot as plt
import math

def polar_sort(l):
    x, y = zip(*((c['lat'], c['lon']) for c in l))
    ave_x = float(sum(x))/len(x)
    ave_y = float(sum(y))/len(y)

    return sorted(l, key=lambda c: math.atan2(c['lat']-ave_x, c['lon']-ave_y))

latLons = [{'lat': -33.783781327, 'lon': 137.47747747700001}, {'lat': -33.783781326899998, 'lon': 139.63963964000001}, {'lat': -33.603601166200001, 'lon': 136.03603603600001}, {'lat': -33.423421005500003, 'lon': 134.59459459499999}, {'lat': -32.882880523399997, 'lon': 132.43243243200001}, {'lat': -32.522520202199999, 'lon': 131.71171171200001}, {'lat': -32.342340041600004, 'lon': 145.40540540500001}, {'lat': -31.261259078399998, 'lon': 147.56756756799999}, {'lat': -31.081078917799999, 'lon': 128.828828829}, {'lat': -29.459457473099999, 'lon': 126.666666667}, {'lat': -28.558556670200002, 'lon': 125.94594594599999}, {'lat': -27.657655866700001, 'lon': 125.225225225}, {'lat': -26.936935223300001, 'lon': 151.89189189199999}, {'lat': -26.7567550624, 'lon': 124.504504504}, {'lat': -25.6756740961, 'lon': 152.61261261300001}, {'lat': -25.3153137736, 'lon': 123.78378378399999}, {'lat': -23.873872481599999, 'lon': 153.33333333300001}, {'lat': -23.333331995999998, 'lon': 123.063063063}, {'lat': -19.3693684138, 'lon': 154.05405405400001}, {'lat': -15.765765115600001, 'lon': 123.063063063}, {'lat': -15.2252246167, 'lon': 153.33333333300001}, {'lat': -13.243242777300001, 'lon': 152.61261261300001}, {'lat': -12.162161767000001, 'lon': 124.504504505}, {'lat': -11.801801428999999, 'lon': 151.89189189199999}, {'lat': -10.9009005815, 'lon': 125.225225225}, {'lat': -8.1981980155999992, 'lon': 149.00900900900001}, {'lat': -6.9369368056800003, 'lon': 147.56756756799999}, {'lat': -6.5765764584799999, 'lon': 129.54954954999999}, {'lat': -6.5765764584799999, 'lon': 146.84684684699999}, {'lat': -5.6756755875199998, 'lon': 130.99099099099999}, {'lat': -4.7747747122700002, 'lon': 143.24324324299999}, {'lat': -4.23423418502, 'lon': 141.08108108100001}, {'lat': -3.8738738326600002, 'lon': 138.198198198}]

x,y = zip(*((c['lat'], c['lon']) for c in polar_sort(latLons)))

plt.plot(x,y)
plt.show()

在此处输入图像描述

于 2012-01-03T13:48:13.700 回答
0

我认为您不需要常规排序。在常规排序中,您使用项目之间的绝对顺序。在这里,您没有绝对顺序(“第一个”坐标是什么?),只有相对顺序。

首先,我将数据从字典中取出并放入元组列表中:

latlonslist = [ (x['lat'],x['lon']) for x in latLons ]

然后import scipy.spatial使用您选择的距离来找到每个点的最近邻居。当然,您也可以使用欧几里得距离而不使用 scipy。

计算所有可能的距离(应该是n^2操作),如下所示:

distances = {}  
for n1 in latlonslist:
  for n2 in latlonslist:
    if n1 == n2:
      continue
    thisdist = scipy.spatial.distance.euclidean(n1,n2)
    distances[n1,n2] = thisdist

然后从任意节点开始遍历节点列表,在每一步中寻找最近的节点。

于 2012-01-03T13:35:29.553 回答