1

我的问题是,如何从时空和高维数据中进行聚类分析?我的目的是找到可以在空间和时间上显示模式的子空间集群。这里的空间意味着地理位置,所以我应该使用自相关定律(也称为托布勒定律或地理学第一定律)。这是对的吗?首先,我通过每个变量的小波变换(因为所有变量都具有时间和地理位置相关)进行时间到频率的变换,然后采用该系数并应用一个子空间聚类算法进行时间高维聚类. 一旦有了时间集群,我就会尝试通过时间集群之间的区域化来找到空间“集群”。

提前感谢任何光。

4

3 回答 3

1

目前尚不清楚您想在这里实现什么。一般来说,对于时空聚类,可以使用基于分布的模型,例如数据集中给定补丁的多元高斯混合模型,并更新协方差矩阵参数(http://en.wikipedia.org/wiki/Multivariate_normal_distribution) - 在在小波变换系数聚类的情况下,我们忽略了任何存在的空间相关性。

我不确定您所说的“区域化”是什么意思

于 2011-12-22T23:37:52.730 回答
1

我知道您使用托布勒定律作为对空间相关性(区域化)的解释。目前尚不清楚最终的应用程序是什么,但在这种情况下我会做的一些验证步骤是:检查 all(150) 变量是否都对应于相同的空间和时间尺度,受相同类型的影响自相关(平稳性)可以在少数情况下简化问题。最后还必须了解要提取哪些特征或模式以及它们是如何表征的。看看这个:http ://www.geokernels.org/pages/modern_indexpag.html

希望它有所帮助!

干杯拉维

于 2012-01-05T20:37:27.813 回答
0

您可以将时间视为另一个维度,具体取决于您的应用程序。

于 2011-12-18T06:36:56.170 回答