是否可以将 numpy 的 linalg.matrix_power 与模一起使用,以便元素不会增长到大于某个值?
4 回答
Using the implementation from Numpy:
https://github.com/numpy/numpy/blob/master/numpy/matrixlib/defmatrix.py#L98
I adapted it by adding a modulo term. HOWEVER, there is a bug, in that if an overflow occurs, no OverflowError
or any other sort of exception is raised. From that point on, the solution will be wrong. There is a bug report here.
Here is the code. Use with care:
from numpy.core.numeric import concatenate, isscalar, binary_repr, identity, asanyarray, dot
from numpy.core.numerictypes import issubdtype
def matrix_power(M, n, mod_val):
# Implementation shadows numpy's matrix_power, but with modulo included
M = asanyarray(M)
if len(M.shape) != 2 or M.shape[0] != M.shape[1]:
raise ValueError("input must be a square array")
if not issubdtype(type(n), int):
raise TypeError("exponent must be an integer")
from numpy.linalg import inv
if n==0:
M = M.copy()
M[:] = identity(M.shape[0])
return M
elif n<0:
M = inv(M)
n *= -1
result = M % mod_val
if n <= 3:
for _ in range(n-1):
result = dot(result, M) % mod_val
return result
# binary decompositon to reduce the number of matrix
# multiplications for n > 3
beta = binary_repr(n)
Z, q, t = M, 0, len(beta)
while beta[t-q-1] == '0':
Z = dot(Z, Z) % mod_val
q += 1
result = Z
for k in range(q+1, t):
Z = dot(Z, Z) % mod_val
if beta[t-k-1] == '1':
result = dot(result, Z) % mod_val
return result % mod_val
显而易见的方法有什么问题?
例如
import numpy as np
x = np.arange(100).reshape(10,10)
y = np.linalg.matrix_power(x, 2) % 50
I had overflow issues with all the previous solutions, so I had to write an algorithm that accounts for overflows after every single integer multiplication. This is how I did it:
def matrix_power_mod(x, n, modulus):
x = np.asanyarray(x)
if len(x.shape) != 2:
raise ValueError("input must be a matrix")
if x.shape[0] != x.shape[1]:
raise ValueError("input must be a square matrix")
if not isinstance(n, int):
raise ValueError("power must be an integer")
if n < 0:
x = np.linalg.inv(x)
n = -n
if n == 0:
return np.identity(x.shape[0], dtype=x.dtype)
y = None
while n > 1:
if n % 2 == 1:
y = _matrix_mul_mod_opt(x, y, modulus=modulus)
x = _matrix_mul_mod(x, x, modulus=modulus)
n = n // 2
return _matrix_mul_mod_opt(x, y, modulus=modulus)
def matrix_mul_mod(a, b, modulus):
if len(a.shape) != 2:
raise ValueError("input a must be a matrix")
if len(b.shape) != 2:
raise ValueError("input b must be a matrix")
if a.shape[1] != a.shape[0]:
raise ValueError("input a and b must have compatible shape for multiplication")
return _matrix_mul_mod(a, b, modulus=modulus)
def _matrix_mul_mod_opt(a, b, modulus):
if b is None:
return a
return _matrix_mul_mod(a, b, modulus=modulus)
def _matrix_mul_mod(a, b, modulus):
r = np.zeros((a.shape[0], b.shape[1]), dtype=a.dtype)
bT = b.T
for rowindex in range(r.shape[0]):
x = (a[rowindex, :] * bT) % modulus
x = np.sum(x, 1) % modulus
r[rowindex, :] = x
return r