我有一些看起来像服从高斯分布的数据。所以我用
my.glm<- glm(b1~a1,family=Gaussian)
然后使用命令
summary(my.glm)
.
结果是:
Call:
glm(formula = b1 ~ a1, family = gaussian)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.067556 -0.029598 0.002121 0.030980 0.044499
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.433697 0.018629 23.28 1.36e-12 ***
a1 -0.027146 0.001927 -14.09 1.16e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 0.001262014)
Null deviance: 0.268224 on 15 degrees of freedom
Residual deviance: 0.017668 on 14 degrees of freedom
AIC: -57.531
Number of Fisher Scoring iterations: 2
我认为他们很合适。但是我怎样才能在这些数据上画出高斯曲线呢?