4

我正在使用 python 中的 libsvm (svmutils) 来执行分类任务。分类器是准确的。但是,我得到这样的输出:

*
optimization finished, #iter = 75
nu = 0.000021
obj = -0.024330, rho = 0.563710
nSV = 26, nBSV = 0
Total nSV = 26
*
optimization finished, #iter = 66
nu = 0.000030
obj = -0.035536, rho = -0.500676
nSV = 21, nBSV = 0
Total nSV = 21
*
optimization finished, #iter = 78
nu = 0.000029
obj = -0.033921, rho = -0.543311
nSV = 23, nBSV = 0
Total nSV = 23
*
optimization finished, #iter = 90
nu = 0.000030
obj = -0.035333, rho = -0.634721
nSV = 23, nBSV = 0
Total nSV = 23
Accuracy = 0% (0/1) (classification)
Accuracy = 0% (0/1) (classification)
Accuracy = 0% (0/1) (classification)
Accuracy = 0% (0/1) (classification)

有什么办法可以抑制这个对话框?分类器非常好用,我只是好奇。另外,"Accuracy"代表什么?为什么在我的情况下这是 0%?(数据在 80 个维度上不重叠。总共 4 个类。我也对其进行了适当的规范化。)

4

3 回答 3

6

使用-q参数选项

import svmutil
param = svmutil.svm_parameter('-q')
...

或者

import svmutil
x = [[0.2, 0.1], [0.7, 0.6]]
y = [0, 1]
svmutil.svm_train(y, x, '-q')
于 2012-01-31T02:48:53.717 回答
1

这可以工作:

import sys
from StringIO import StringIO

# back up your standard output
bkp_stdout = sys.stdout

# replace standard output with dummy stream
sys.stdout = StringIO()
print 1  # here you should put you call (classification)

#restore standard output for further use
sys.stdout = bkp_stdout
print 2

此外,在分类问题中,准确性是使用训练模型从测试/交叉验证集中正确预测项目的一部分(百分比)。

于 2011-11-28T23:09:28.530 回答
1

要同时抑制训练和预测输出,您需要结合 has2k1(用于抑制训练输出)和 vonPetrushev(用于抑制预测输出)提供的解决方案。

不幸的是,您不能执行以下操作:

# Test matrix built, execute prediction.
paramString = "" if useVerbosity else " -q "
predLabels, predAccuracy, predDiscriminants = \
 svmutil.svm_predict( targetLabels, testData, svModel.representation, paramString )

因为使用当前的python接口你会得到以下错误:

  File "/home/jbbrown/local_bin/pyLibSVM/pyLibSVM/svmutil.py", line 193, in svm_predict
    raise ValueError("Wrong options")
  ValueError: Wrong options
于 2012-03-02T03:23:57.313 回答