15

我正在使用OpenCV 库示例中提供的程序squares.c 。它适用于每张图像,但我真的无法弄清楚为什么它无法识别该图像中绘制的正方形

http://desmond.imageshack.us/Himg12/scaled.php?server=12&filename=26725680.jpg&res=medium

康力之后:

扩张后:

结果图像(红色 http://img267.imageshack.us/img267/8016/resultuq.jpg

如您所见,未检测到正方形。

检测后我需要提取正方形中包含的区域...没有 ROI 怎么可能?

4

2 回答 2

14

下面的源代码展示了Square Detector程序的一个小变种。它并不完美,但它说明了解决问题的一种方法。

您可以将此代码与原始代码进行比较并检查所做的所有更改,但主要是:

  • 将阈值级别的数量减少到2

  • 在开始时findSquares(),将图像放大以检测细小的白色方块,然后对整个图像进行模糊处理,这样算法就不会将海洋和天空检测为单独的方块。

编译后,使用以下语法运行应用程序:./app <image>

// The "Square Detector" program.
// It loads several images sequentially and tries to find squares in
// each image

#include "highgui.h"
#include "cv.h"

#include <iostream>
#include <math.h>
#include <string.h>

using namespace cv;
using namespace std;

void help()
{
        cout <<
        "\nA program using pyramid scaling, Canny, contours, contour simpification and\n"
        "memory storage (it's got it all folks) to find\n"
        "squares in a list of images pic1-6.png\n"
        "Returns sequence of squares detected on the image.\n"
        "the sequence is stored in the specified memory storage\n"
        "Call:\n"
        "./squares\n"
    "Using OpenCV version %s\n" << CV_VERSION << "\n" << endl;
}


int thresh = 50, N = 2; // karlphillip: decreased N to 2, was 11.
const char* wndname = "Square Detection Demo";

// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
double angle( Point pt1, Point pt2, Point pt0 )
{
    double dx1 = pt1.x - pt0.x;
    double dy1 = pt1.y - pt0.y;
    double dx2 = pt2.x - pt0.x;
    double dy2 = pt2.y - pt0.y;
    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}

// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
void findSquares( const Mat& image, vector<vector<Point> >& squares )
{
    squares.clear();

    Mat pyr, timg, gray0(image.size(), CV_8U), gray;

    // karlphillip: dilate the image so this technique can detect the white square,
    Mat out(image);
    dilate(out, out, Mat(), Point(-1,-1));
    // then blur it so that the ocean/sea become one big segment to avoid detecting them as 2 big squares.
    medianBlur(out, out, 7);

    // down-scale and upscale the image to filter out the noise
    pyrDown(out, pyr, Size(out.cols/2, out.rows/2));
    pyrUp(pyr, timg, out.size());
    vector<vector<Point> > contours;

    // find squares in every color plane of the image
    for( int c = 0; c < 3; c++ )
    {
        int ch[] = {c, 0};
        mixChannels(&timg, 1, &gray0, 1, ch, 1);

        // try several threshold levels
        for( int l = 0; l < N; l++ )
        {
            // hack: use Canny instead of zero threshold level.
            // Canny helps to catch squares with gradient shading
            if( l == 0 )
            {
                // apply Canny. Take the upper threshold from slider
                // and set the lower to 0 (which forces edges merging)
                Canny(gray0, gray, 0, thresh, 5);
                // dilate canny output to remove potential
                // holes between edge segments
                dilate(gray, gray, Mat(), Point(-1,-1));
            }
            else
            {
                // apply threshold if l!=0:
                //     tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
                gray = gray0 >= (l+1)*255/N;
            }

            // find contours and store them all as a list
            findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);

            vector<Point> approx;

            // test each contour
            for( size_t i = 0; i < contours.size(); i++ )
            {
                // approximate contour with accuracy proportional
                // to the contour perimeter
                approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);

                // square contours should have 4 vertices after approximation
                // relatively large area (to filter out noisy contours)
                // and be convex.
                // Note: absolute value of an area is used because
                // area may be positive or negative - in accordance with the
                // contour orientation
                if( approx.size() == 4 &&
                    fabs(contourArea(Mat(approx))) > 1000 &&
                    isContourConvex(Mat(approx)) )
                {
                    double maxCosine = 0;

                    for( int j = 2; j < 5; j++ )
                    {
                        // find the maximum cosine of the angle between joint edges
                        double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
                        maxCosine = MAX(maxCosine, cosine);
                    }

                    // if cosines of all angles are small
                    // (all angles are ~90 degree) then write quandrange
                    // vertices to resultant sequence
                    if( maxCosine < 0.3 )
                        squares.push_back(approx);
                }
            }
        }
    }
}


// the function draws all the squares in the image
void drawSquares( Mat& image, const vector<vector<Point> >& squares )
{
    for( size_t i = 0; i < squares.size(); i++ )
    {
        const Point* p = &squares[i][0];
        int n = (int)squares[i].size();
        polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, CV_AA);
    }

    imshow(wndname, image);
}


int main(int argc, char** argv)
{
    if (argc < 2)
    {
        cout << "Usage: ./program <file>" << endl;
        return -1;
    }

//    static const char* names[] = { "pic1.png", "pic2.png", "pic3.png",
//        "pic4.png", "pic5.png", "pic6.png", 0 };
    static const char* names[] = { argv[1], 0 };

    help();
    namedWindow( wndname, 1 );
    vector<vector<Point> > squares;

    for( int i = 0; names[i] != 0; i++ )
    {
        Mat image = imread(names[i], 1);
        if( image.empty() )
        {
            cout << "Couldn't load " << names[i] << endl;
            continue;
        }

        findSquares(image, squares);
        drawSquares(image, squares);
        imwrite("out.jpg", image);

        int c = waitKey();
        if( (char)c == 27 )
            break;
    }

    return 0;
}

输出

在此处输入图像描述

于 2011-10-11T20:56:18.077 回答
6

我建议您在此图像中的正方形太薄。squares.c 的第一步是在传递到 Canny 边缘检测器之前缩小和备份图像以减少噪声。

缩放与 5x5 内核卷积,因此在您的情况下,这可能会导致在如此薄的边缘丢失任何梯度。

如果要将正方形的边缘覆盖在连续的背景上,请尝试使正方形的边缘至少为 5 像素。

于 2011-10-11T20:20:38.643 回答