让我们看看速度有多快data.table
,并与使用dplyr
. 这大概是在dplyr
.
data %>% group_by(PID, Time, Site, Rep) %>%
summarise(totalCount = sum(Count)) %>%
group_by(PID, Time, Site) %>%
summarise(mean(totalCount))
或者这个,取决于问题的确切解释方式:
data %>% group_by(PID, Time, Site) %>%
summarise(totalCount = sum(Count), meanCount = mean(Count)
这是这些替代方案与@Ramnath 提出的答案以及@David Arenburg 在评论中提出的答案的完整示例,我认为这相当于第二个dplyr
陈述。
nrow <- 510000
data <- data.frame(PID = sample(letters, nrow, replace = TRUE),
Time = sample(letters, nrow, replace = TRUE),
Site = sample(letters, nrow, replace = TRUE),
Rep = rnorm(nrow),
Count = rpois(nrow, 100))
library(dplyr)
library(data.table)
Rprof(tf1 <- tempfile())
ans <- data %>% group_by(PID, Time, Site, Rep) %>%
summarise(totalCount = sum(Count)) %>%
group_by(PID, Time, Site) %>%
summarise(mean(totalCount))
Rprof()
summaryRprof(tf1) #reports 1.68 sec sampling time
Rprof(tf2 <- tempfile())
ans <- data %>% group_by(PID, Time, Site, Rep) %>%
summarise(total = sum(Count), meanCount = mean(Count))
Rprof()
summaryRprof(tf2) # reports 1.60 seconds
Rprof(tf3 <- tempfile())
data_t = data.table(data)
ans = data_t[,list(A = sum(Count), B = mean(Count)), by = 'PID,Time,Site']
Rprof()
summaryRprof(tf3) #reports 0.06 seconds
Rprof(tf4 <- tempfile())
ans <- setDT(data)[,.(A = sum(Count), B = mean(Count)), by = 'PID,Time,Site']
Rprof()
summaryRprof(tf4) #reports 0.02 seconds
数据表方法要快得多,setDT
甚至更快!