我想根据自定义指标(在这种情况下为 RPS 或活动连接)扩展我的应用程序。无需设置 prometheus 或使用任何外部服务。我可以从我的网络应用程序中公开这个 API。我有哪些选择?
1 回答
在大多数 Kubernetes 集群上监控不同类型的指标(例如自定义指标)是导致更稳定和可靠的系统/应用程序/工作负载的基础。如评论部分所述,要监控自定义指标,建议使用为此目的设计的工具,而不是发明解决方法。我很高兴在这种情况下最终决定是使用Prometheus和KEDA来正确扩展 Web 应用程序。
我想简要地向其他正在为类似考虑而苦苦挣扎的社区成员展示 KEDA 是如何工作的。
要使用 Prometheus 作为 Keda 的缩放器,我们需要安装和配置 Prometheus。安装 Prometheus 的方法有很多种,您应该选择适合您需要的一种。
我已经使用 Helm安装了kube-prometheus 堆栈:
注意:我允许 Prometheus 发现其命名空间内的所有PodMonitors
/ ,而无需通过将和值设置为来ServiceMonitors
应用标签过滤。prometheus.prometheusSpec.podMonitorSelectorNilUsesHelmValues
prometheus.prometheusSpec.serviceMonitorSelectorNilUsesHelmValues
false
$ helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
$ helm repo update
$ helm install prom-1 prometheus-community/kube-prometheus-stack --set prometheus.prometheusSpec.podMonitorSelectorNilUsesHelmValues=false --set prometheus.prometheusSpec.serviceMonitorSelectorNilUsesHelmValues=false
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
alertmanager-prom-1-kube-prometheus-sta-alertmanager-0 2/2 Running 0 2m29s
prom-1-grafana-865d4c8876-8zdhm 3/3 Running 0 2m34s
prom-1-kube-prometheus-sta-operator-6b5d5d8df5-scdjb 1/1 Running 0 2m34s
prom-1-kube-state-metrics-74b4bb7857-grbw9 1/1 Running 0 2m34s
prom-1-prometheus-node-exporter-2v2s6 1/1 Running 0 2m34s
prom-1-prometheus-node-exporter-4vc9k 1/1 Running 0 2m34s
prom-1-prometheus-node-exporter-7jchl 1/1 Running 0 2m35s
prometheus-prom-1-kube-prometheus-sta-prometheus-0 2/2 Running 0 2m28s
然后我们可以部署一个将被 Prometheus 监控的应用程序。我创建了一个简单的应用程序,它在路径上公开了一些指标(例如nginx_vts_server_requests_total
) :/status/format/prometheus
$ cat app-1.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: app-1
spec:
selector:
matchLabels:
app: app-1
template:
metadata:
labels:
app: app-1
spec:
containers:
- name: app-1
image: mattjcontainerregistry/nginx-vts:v1.0
resources:
limits:
cpu: 50m
requests:
cpu: 50m
ports:
- containerPort: 80
name: http
---
apiVersion: v1
kind: Service
metadata:
name: app-1
labels:
app: app-1
spec:
ports:
- port: 80
targetPort: 80
name: http
selector:
app: app-1
type: LoadBalancer
接下来,创建一个ServiceMonitor来描述如何监控我们的app-1
应用程序:
$ cat servicemonitor.yaml
kind: ServiceMonitor
apiVersion: monitoring.coreos.com/v1
metadata:
name: app-1
labels:
app: app-1
spec:
selector:
matchLabels:
app: app-1
endpoints:
- interval: 15s
path: "/status/format/prometheus"
port: http
等待一段时间后,让我们检查app-1
日志以确保它被正确报废:
$ kubectl get pods | grep app-1
app-1-5986d56f7f-2plj5 1/1 Running 0 35s
$ kubectl logs -f app-1-5986d56f7f-2plj5
10.44.1.6 - - [07/Feb/2022:16:31:11 +0000] "GET /status/format/prometheus HTTP/1.1" 200 2742 "-" "Prometheus/2.33.1" "-"
10.44.1.6 - - [07/Feb/2022:16:31:26 +0000] "GET /status/format/prometheus HTTP/1.1" 200 3762 "-" "Prometheus/2.33.1" "-"
10.44.1.6 - - [07/Feb/2022:16:31:41 +0000] "GET /status/format/prometheus HTTP/1.1" 200 3762 "-" "Prometheus/2.33.1" "-"
现在是部署 KEDA 的时候了。如KEDA 文档中所述,有几种部署 KEDA 运行时的方法。我选择使用 Helm 安装 KEDA,因为它非常简单 :-)
$ helm repo add kedacore https://kedacore.github.io/charts
$ helm repo update
$ kubectl create namespace keda
$ helm install keda kedacore/keda --namespace keda
我们需要创建的最后一件事ScaledObject
是用于定义 KEDA 应该如何扩展我们的应用程序以及触发器是什么。在下面的示例中,我使用了nginx_vts_server_requests_total
指标。
注意:有关 prometheus 触发器的更多信息,请参阅触发器规范文档。
$ cat scaled-object.yaml
apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
name: scaled-app-1
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: app-1
pollingInterval: 30
cooldownPeriod: 120
minReplicaCount: 1
maxReplicaCount: 5
advanced:
restoreToOriginalReplicaCount: false
horizontalPodAutoscalerConfig:
behavior:
scaleDown:
stabilizationWindowSeconds: 300
policies:
- type: Percent
value: 100
periodSeconds: 15
triggers:
- type: prometheus
metadata:
serverAddress: http://prom-1-kube-prometheus-sta-prometheus.default.svc:9090
metricName: nginx_vts_server_requests_total
query: sum(rate(nginx_vts_server_requests_total{code="2xx", service="app-1"}[2m])) # Note: query must return a vector/scalar single element response
threshold: '10'
$ kubectl apply -f scaled-object.yaml
scaledobject.keda.sh/scaled-app-1 created
最后,我们可以app-1
根据请求的数量检查应用程序是否正确扩展:
$ for a in $(seq 1 10000); do curl <PUBLIC_IP_APP_1> 1>/dev/null 2>&1; done
$ kubectl get hpa -w
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS
keda-hpa-scaled-app-1 Deployment/app-1 0/10 (avg) 1 5 1
keda-hpa-scaled-app-1 Deployment/app-1 15/10 (avg) 1 5 2
keda-hpa-scaled-app-1 Deployment/app-1 12334m/10 (avg) 1 5 3
keda-hpa-scaled-app-1 Deployment/app-1 13250m/10 (avg) 1 5 4
keda-hpa-scaled-app-1 Deployment/app-1 12600m/10 (avg) 1 5 5
$ kubectl get pods | grep app-1
app-1-5986d56f7f-2plj5 1/1 Running 0 36m
app-1-5986d56f7f-5nrqd 1/1 Running 0 77s
app-1-5986d56f7f-78jw8 1/1 Running 0 94s
app-1-5986d56f7f-bl859 1/1 Running 0 62s
app-1-5986d56f7f-xlfp6 1/1 Running 0 45s
正如您在上面看到的,我们的应用程序已正确缩放到 5 个副本。