来自德国社区的 Guten Tag :)
我正在处理时间和公司的面板数据和固定效果(= FE)。我想通过使用方差膨胀因子(= VIF)来检查我的模型的多重共线性,但是 R 给了我一个警告消息而不是输出。
我如何解释此警告消息,是否有解决方案?
我想过自己计算VIF:
VIF = 1 / (1 - R-squared)
VIF = 1 / (1 - 0.26632)
VIF = 1.36299
这是在解决问题吗?
当没有 FE 时,如何像以前一样为每个变量获取 VIF?
提前致谢!:)
代码 1:
### Creating a baseline formular ###
FORMULAR.PLM.BASELINE <- StockPrice ~ EPS + BookValuePS + AssetsTotal.LOG + LeverageRatio + AvgAnnualDividendyield + Dummy.ESG + Dummy.Sektor
### Creating FE-model ###
MOD.FE <- plm(FORMULAR.PLM.BASELINE, data = PD.Datensatz_so, model = "within", effect = "twoways")
summary(MOD.FE)
结果 1:
Twoways effects Within Model
Call:
plm(formula = FORMULAR.PLM.BASELINE, data = PD.Datensatz_so,
effect = "twoways", model = "within")
Balanced Panel: n = 17, T = 7, N = 119
Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-30.90756 -7.42737 -0.66878 6.97856 37.45463
Coefficients:
Estimate Std. Error t-value Pr(>|t|)
EPS 0.33624 0.26725 1.2581 0.2117
BookValuePS 0.46793 0.32815 1.4260 0.1574
AssetsTotal.LOG 14.21471 12.38404 1.1478 0.2542
LeverageRatio 38.60903 40.14368 0.9618 0.3388
AvgAnnualDividendyield -402.35998 249.04744 -1.6156 0.1098
Dummy.ESGbefriedigend -3.17031 14.06732 -0.2254 0.8222
Dummy.ESGgut -21.72112 16.71391 -1.2996 0.1971
Dummy.ESGexzellent -21.21610 17.62499 -1.2038 0.2319
Total Sum of Squares: 25242
Residual Sum of Squares: 18519
R平方:0.26632
Adj. R-Squared: 0.016197
F-statistic: 3.99284 on 8 and 88 DF, p-value: 0.00044688
代码 2:
### Checking for multicollinearity ###
vif(MOD.FE)
1/vif(MOD.FE)
结果 2:
# Error in R[subs, subs] : subscript out of bounds
# In addition: Warning message:
# In vif.default(MOD.FE) : No intercept: vifs may not be sensible.
数据:
structure(list(Company = c("AIR PRODUCTS & CHEMICALS INC", "AIR PRODUCTS & CHEMICALS INC",
"AIR PRODUCTS & CHEMICALS INC", "AIR PRODUCTS & CHEMICALS INC",
"AIR PRODUCTS & CHEMICALS INC", "AIR PRODUCTS & CHEMICALS INC",
"AIR PRODUCTS & CHEMICALS INC", "HESS CORP", "HESS CORP", "HESS CORP",
"HESS CORP", "HESS CORP", "HESS CORP", "HESS CORP", "APACHE CORP",
"APACHE CORP", "APACHE CORP", "APACHE CORP", "APACHE CORP", "APACHE CORP",
"APACHE CORP", "AVERY DENNISON CORP", "AVERY DENNISON CORP",
"AVERY DENNISON CORP", "AVERY DENNISON CORP", "AVERY DENNISON CORP",
"AVERY DENNISON CORP", "AVERY DENNISON CORP", "BALL CORP", "BALL CORP",
"BALL CORP", "BALL CORP", "BALL CORP", "BALL CORP", "BALL CORP",
"CHEVRON CORP", "CHEVRON CORP", "CHEVRON CORP", "CHEVRON CORP",
"CHEVRON CORP", "CHEVRON CORP", "CHEVRON CORP", "ECOLAB INC",
"ECOLAB INC", "ECOLAB INC", "ECOLAB INC", "ECOLAB INC", "ECOLAB INC",
"ECOLAB INC", "EXXON MOBIL CORP", "EXXON MOBIL CORP", "EXXON MOBIL CORP",
"EXXON MOBIL CORP", "EXXON MOBIL CORP", "EXXON MOBIL CORP", "EXXON MOBIL CORP",
"FMC CORP", "FMC CORP", "FMC CORP", "FMC CORP", "FMC CORP", "FMC CORP",
"FMC CORP", "HALLIBURTON CO", "HALLIBURTON CO", "HALLIBURTON CO",
"HALLIBURTON CO", "HALLIBURTON CO", "HALLIBURTON CO", "HALLIBURTON CO",
"HELMERICH & PAYNE", "HELMERICH & PAYNE", "HELMERICH & PAYNE",
"HELMERICH & PAYNE", "HELMERICH & PAYNE", "HELMERICH & PAYNE",
"HELMERICH & PAYNE", "HOLLYFRONTIER CORP", "HOLLYFRONTIER CORP",
"HOLLYFRONTIER CORP", "HOLLYFRONTIER CORP", "HOLLYFRONTIER CORP",
"HOLLYFRONTIER CORP", "HOLLYFRONTIER CORP", "INTL FLAVORS & FRAGRANCES",
"INTL FLAVORS & FRAGRANCES", "INTL FLAVORS & FRAGRANCES", "INTL FLAVORS & FRAGRANCES",
"INTL FLAVORS & FRAGRANCES", "INTL FLAVORS & FRAGRANCES", "INTL FLAVORS & FRAGRANCES",
"INTL PAPER CO", "INTL PAPER CO", "INTL PAPER CO", "INTL PAPER CO",
"INTL PAPER CO", "INTL PAPER CO", "INTL PAPER CO", "MARATHON OIL CORP",
"MARATHON OIL CORP", "MARATHON OIL CORP", "MARATHON OIL CORP",
"MARATHON OIL CORP", "MARATHON OIL CORP", "MARATHON OIL CORP",
"NEWMONT CORP", "NEWMONT CORP", "NEWMONT CORP", "NEWMONT CORP",
"NEWMONT CORP", "NEWMONT CORP", "NEWMONT CORP", "NUCOR CORP",
"NUCOR CORP", "NUCOR CORP", "NUCOR CORP", "NUCOR CORP", "NUCOR CORP",
"NUCOR CORP"), Year = structure(c(1L, 2L, 3L, 4L, 5L, 6L, 7L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L,
3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L,
5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L,
2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L
), .Label = c("2011", "2012", "2013", "2014", "2015", "2016",
"2017"), class = "factor"), ggroup = c(1510, 1510, 1510, 1510,
1510, 1510, 1510, 1010, 1010, 1010, 1010, 1010, 1010, 1010, 1010,
1010, 1010, 1010, 1010, 1010, 1010, 1510, 1510, 1510, 1510, 1510,
1510, 1510, 1510, 1510, 1510, 1510, 1510, 1510, 1510, 1010, 1010,
1010, 1010, 1010, 1010, 1010, 1510, 1510, 1510, 1510, 1510, 1510,
1510, 1010, 1010, 1010, 1010, 1010, 1010, 1010, 1510, 1510, 1510,
1510, 1510, 1510, 1510, 1010, 1010, 1010, 1010, 1010, 1010, 1010,
1010, 1010, 1010, 1010, 1010, 1010, 1010, 1010, 1010, 1010, 1010,
1010, 1010, 1010, 1510, 1510, 1510, 1510, 1510, 1510, 1510, 1510,
1510, 1510, 1510, 1510, 1510, 1510, 1010, 1010, 1010, 1010, 1010,
1010, 1010, 1510, 1510, 1510, 1510, 1510, 1510, 1510, 1510, 1510,
1510, 1510, 1510, 1510, 1510), gvkey = structure(c(1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 17L, 17L, 17L, 17L, 17L, 17L,
17L), .Label = c("1209", "1380", "1678", "1913", "1988", "2991",
"4213", "4503", "4510", "5439", "5581", "5667", "6078", "6104",
"7017", "7881", "8030"), class = "factor"), StockPrice = c(85.19,
84.02, 111.78, 144.23, 130.11, 143.82, 164.08, 56.8, 52.96, 83,
73.82, 48.48, 62.29, 47.47, 90.58, 78.5, 85.94, 62.67, 44.47,
63.47, 42.22, 28.68, 34.92, 50.19, 51.88, 62.66, 70.22, 114.86,
17.86, 22.38, 25.83, 34.09, 36.37, 37.54, 37.85, 106.4, 108.14,
124.91, 112.18, 89.96, 117.7, 125.19, 57.81, 71.9, 104.27, 104.52,
114.38, 117.22, 134.18, 84.76, 86.55, 101.2, 92.45, 77.95, 90.26,
83.64, 43.02, 58.52, 75.46, 57.03, 39.13, 56.56, 94.66, 34.51,
34.69, 50.75, 39.33, 34.04, 54.09, 48.87, 58.36, 56.01, 84.08,
67.42, 53.55, 77.4, 64.64, 23.4, 46.55, 49.69, 37.48, 39.89,
32.76, 51.22, 52.42, 66.54, 85.98, 101.36, 119.64, 117.83, 152.61,
29.6, 39.84, 49.03, 53.58, 37.7, 53.06, 57.94, 29.27, 30.66,
35.3, 28.29, 12.59, 17.31, 16.93, 60.01, 46.44, 23.03, 18.9,
17.99, 34.07, 37.52, 39.57, 43.16, 53.38, 49.05, 40.3, 59.52,
63.58), EPS = c(5.75, 5.53, 4.74, 4.66, 5.95, 2.92, 13.76, 5.01,
5.93, 15.53, 8.11, -10.68, -19.37, -12.93, 11.94, 5.14, 5.65,
-14.07, -61.16, -3.71, 3.42, 1.78, 1.65, 2.49, 2.69, 3.01, 3.63,
3.2, 1.34, 1.3, 1.39, 1.7, 1.02, 0.83, 1.07, 13.54, 13.42, 11.18,
10.21, 2.46, -0.27, 4.88, 1.95, 2.41, 3.23, 4.01, 3.38, 4.2,
5.21, 8.43, 9.7, 7.37, 7.6, 3.85, 1.88, 4.63, 2.58, 3.02, 2.17,
2.31, 3.66, 1.56, 3.99, 3.09, 2.85, 2.37, 4.13, -0.79, -6.69,
-0.53, 4.07, 5.44, 6.93, 3.57, 3.92, -0.53, -1.18, 6.46, 8.41,
3.67, 1.43, 3.92, -1.48, 4.57, 3.32, 3.13, 4.35, 5.12, 5.21,
5.09, 3.74, 3.1, 1.82, 3.15, 1.3, 2.25, 2.2, 5.19, 4.15, 2.24,
2.49, 4.48, -3.26, -2.53, -6.73, 0.74, 3.65, -4.94, 1.02, 0.43,
-1.18, -0.18, 2.45, 1.59, 1.53, 2.23, 1.12, 2.49, 4.12), BookValuePS = c(27.21,
30.67, 33.58, 34.63, 33.73, 32.72, 46.27, 54.46, 61.75, 75.99,
77.68, 67.77, 45.92, 35.08, 75.5, 80.54, 84.55, 67.54, 6.79,
16.46, 19.46, 15.53, 12.13, 17.21, 11.53, 10.61, 10.48, 11.88,
3.69, 3.6, 4.11, 3.73, 4.56, 10.85, 11.25, 61.1, 70, 77.78, 82.3,
81.76, 77.72, 78.67, 23.92, 20.78, 24.49, 24.38, 23.31, 23.59,
26.31, 31.7, 35.84, 39.36, 40.76, 40.72, 40.12, 44.1, 8.74, 10.75,
11.24, 11.48, 13.95, 14.62, 19.97, 14.38, 17.02, 15.12, 19.18,
18.13, 10.93, 9.57, 30.66, 35.9, 41.81, 45.37, 45.45, 42.23,
38.38, 32.84, 29.49, 29.94, 28, 27.84, 6.58, 30.49, 13.73, 15.4,
17.99, 18.76, 19.77, 20.42, 21.3, 15.32, 14.45, 18.3, 11.89,
9.32, 10.65, 15.79, 24.16, 25.9, 27.44, 30.91, 27.4, 20.71, 13.77,
26.11, 27.77, 20.35, 20.63, 22.18, 20.18, 19.9, 23.58, 24.02,
23.96, 24.3, 23.14, 24.66, 27.31), ESGscore = c(84.2750015258789,
81.9225006103516, 77.4024963378906, 80.1125030517578, 78.6449966430664,
76.3775024414062, 79.2699966430664, 69.4899978637695, 65.8300018310547,
64.4300003051758, 74.3000030517578, 75.7600021362305, 71.4599990844727,
74.6900024414062, 55.8300018310547, 56.0900001525879, 57.5, 60.75,
60.8800010681152, 67.379997253418, 71.9899978637695, 82.9000015258789,
77.3899993896484, 76.9300003051758, 78.7399978637695, 76.2283325195312,
74.2125015258789, 68.3600006103516, 64.4100036621094, 65.6600036621094,
63.75, 67.7300033569336, 67.5699996948242, 74.4300003051758,
68.5699996948242, 86.5100021362305, 84.3099975585938, 82.6600036621094,
82.3399963378906, 88.4100036621094, 90.0800018310547, 92.25,
74.6999969482422, 72.3600006103516, 68.3899993896484, 67.9300003051758,
65.629997253418, 74.9000015258789, 74.8600006103516, 81.6999969482422,
79.370002746582, 79.0899963378906, 75.25, 81.9499969482422, 81.0199966430664,
88.3399963378906, 59.8199996948242, 55.6500015258789, 52.2999992370605,
51.8499984741211, 56.9199981689453, 66.620002746582, 65.3300018310547,
85.9800033569336, 83.9499969482422, 85.1100006103516, 67.4300003051758,
76.4400024414062, 69.9199981689453, 78.4599990844727, 19.0599994659424,
17.5200004577637, 18.1200008392334, 23.5025005340576, 35.5349998474121,
36.7350006103516, 41.1725006103516, 27.8700008392334, 33.7700004577637,
37.6699981689453, 47.7599983215332, 50.2400016784668, 55.25,
58.3800010681152, 70.7600021362305, 71.9800033569336, 75.1500015258789,
75.1399993896484, 79.4100036621094, 70.1500015258789, 76.5299987792969,
71.3399963378906, 80.1900024414062, 72.9899978637695, 66.9400024414062,
73.8000030517578, 76.2399978637695, 72.0500030517578, 80.4700012207031,
80.5100021362305, 79.6800003051758, 76.4300003051758, 78.6399993896484,
77.2300033569336, 76.5899963378906, 81.6399993896484, 77.8600006103516,
79.5100021362305, 85.9800033569336, 81.120002746582, 78.75, 80.7099990844727,
59.8600006103516, 52.3400001525879, 54.9300003051758, 54.8899993896484,
64.120002746582, 62.4900016784668, 61.7200012207031), LeverageRatio = c(0.594435561205841,
0.617679355403529, 0.605486789891209, 0.585704565106127, 0.584301032659383,
0.607893538666041, 0.453831624609765, 0.526880621422731, 0.514513938445248,
0.421808485755719, 0.424412877806003, 0.433075010966516, 0.492225987910974,
0.521893388715819, 0.466561641467023, 0.50435484136523, 0.458182585135552,
0.536441950243066, 0.863814881647384, 0.722989475553977, 0.661709698020254,
0.666478988304306, 0.690341393278699, 0.676354504930841, 0.755401139345263,
0.766383635343921, 0.789486848203547, 0.796336317416944, 0.832646959442815,
0.85152722608109, 0.846556170952766, 0.863545109551454, 0.872015950820485,
0.787608977926173, 0.77045838429728, 0.420539064513973, 0.414014816595273,
0.412369508931914, 0.417244930946599, 0.426101922939614, 0.440337129630342,
0.416388895455584, 0.689339285962852, 0.654171637758199, 0.625987329478904,
0.624183852632949, 0.629331005652438, 0.623511997043816, 0.618357519590785,
0.53362009593659, 0.503099207597478, 0.498272819542802, 0.50099429745374,
0.492778196806015, 0.493436548254086, 0.461735462056663, 0.668598911289985,
0.661560602236253, 0.709695906149125, 0.713416346784009, 0.705069637526097,
0.681119995202526, 0.70869946604795, 0.442581408117582, 0.424844947099599,
0.535263319987681, 0.495440446650124, 0.581452005847003, 0.651518518518518,
0.668247956946382, 0.346499145342847, 0.329672942621959, 0.290686407542856,
0.272377520553529, 0.315234369479579, 0.33241919028586, 0.353323181006733,
0.495472522128971, 0.413984333584541, 0.403422922342673, 0.401603334682229,
0.373721043240805, 0.503861576091451, 0.497685035920943, 0.627590017963253,
0.615704103314394, 0.560867296803568, 0.565457600575885, 0.572662204137801,
0.595157943268954, 0.633783603720298, 0.754751231800837, 0.803937424190589,
0.74292692210099, 0.821677590294241, 0.873017948801779, 0.869815564552407,
0.807627643571365, 0.453253004367091, 0.482156007477483, 0.456934306569343,
0.416289467107273, 0.425799263408746, 0.435871872386956, 0.468108304561148,
0.530610759263303, 0.535480607082631, 0.590494265869811, 0.58765451918446,
0.549281232626479, 0.490228709999525, 0.484073335602782, 0.486979724850567,
0.460038216337232, 0.497097505794197, 0.502272882334361, 0.479531926496852,
0.482388666486795, 0.448336979534749), AvgAnnualDividendyield = c(0.0266,
0.0314, 0.0298, 0.0253, 0.0241, 0.025, 0.0245, 0.006, 0.009,
0.01, 0.012, 0.016, 0.021, 0.025, 0.007, 0.01, 0.011, 0.011,
0.018, 0.019, 0.019, 0.029, 0.028, 0.03, 0.023, 0.02, 0.023,
0.019, 0.008, 0.01, 0.011, 0.009, 0.008, 0.007, 0.009, 0.031,
0.033, 0.033, 0.035, 0.045, 0.043, 0.039, 0.013, 0.016, 0.008,
0.011, 0.012, 0.013, 0.012, 0.023, 0.025, 0.027, 0.028, 0.035,
0.037, 0.041, 0.011, 0.008, 0.01, 0.01, 0.015, 0.017, 0.01, 0.008,
0.011, 0.011, 0.011, 0.018, 0.017, 0.015, 0.0043, 0.0055, 0.0131,
0.0254, 0.0443, 0.0447, 0.0481, 0.054, 0.09, 0.068, 0.071, 0.03,
0.045, 0.042, 0.019, 0.027, 0.014, 0.017, 0.017, 0.019, 0.019,
0.037, 0.035, 0.029, 0.032, 0.036, 0.044, 0.036, 0.028, 0.023,
0.021, 0.023, 0.03, 0.014, 0.014, 0.021, 0.027, 0.037, 0.01,
0.005, 0.004, 0.007, 0.036, 0.036, 0.031, 0.029, 0.034, 0.031,
0.026), AssetsTotal.LOG = c(9.56736426869569, 9.73753926605387,
9.78976436754936, 9.78577886714304, 9.76641272417325, 9.80119459273923,
9.82375142221191, 10.5747980384869, 10.6791589746007, 10.6632180372392,
10.5604374447842, 10.4398347135322, 10.261895993101, 10.0481072421461,
10.8599792861544, 11.0143083465337, 11.0290176185546, 10.9322494593032,
9.84384369960861, 10.0221146762943, 9.99524597777567, 8.51171827041292,
8.53803445653107, 8.43611330054631, 8.38027325164503, 8.3269282159168,
8.38854128098197, 8.5442050446523, 8.89351782318383, 8.92360453139329,
8.96441423278807, 8.93208043810331, 9.18778796750567, 9.69109846411978,
9.75086071107721, 12.2523549056307, 12.3587164763448, 12.4441166319283,
12.4913493273481, 12.4916387308594, 12.4687368650067, 12.4443254746449,
9.81141616514545, 9.77407912202464, 9.88514535828826, 9.87646055234287,
9.83315624388896, 9.81630520922804, 9.90160580268615, 12.7100307417182,
12.7182823110683, 12.7565265916732, 12.7642388118431, 12.7271198504863,
12.7077989961906, 12.7619414221787, 8.22777628167074, 8.38341031627978,
8.56316036427592, 8.58307456052975, 8.7524075805257, 8.72246597631381,
9.12764329007411, 10.072259391783, 10.2186631892968, 10.2827113494391,
10.3809631966206, 10.5171043941393, 10.2035921449865, 10.1300253369184,
8.51797111141425, 8.65191374487273, 8.74270627691564, 8.81312030587554,
8.87514902365156, 8.8293755227843, 8.77028192359486, 9.24131769131151,
9.2427104683695, 9.21599826167033, 9.13028362611817, 9.03459301705783,
9.15225152771786, 9.27726550821295, 7.99482826345879, 8.0862872208779,
8.11124725483796, 8.15898023498527, 8.22186975840737, 8.29828662307883,
8.43357802939057, 10.2033328521137, 10.3782610379096, 10.3586313188748,
10.2640947550025, 10.3283303610705, 10.4146631150664, 10.4312587850283,
10.3536391782667, 10.4718082001492, 10.4806625568437, 10.4915797263212,
10.3831630085098, 10.3447701535097, 9.99934303817965, 10.2209953818852,
10.2972174044259, 10.1171462646391, 10.123265446374, 10.1338847325616,
9.95375281868368, 9.93124862332152, 9.58674389405408, 9.55761537614691,
9.62926668371527, 9.65604661844032, 9.56454021436101, 9.63059672022673,
9.67037306957062), Dummy.ESG = structure(c(4L, 4L, 4L, 4L, 4L,
4L, 4L, 3L, 3L, 3L, 3L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
4L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 3L, 4L, 3L,
4L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L,
3L, 4L, 4L, 4L, 3L, 4L, 3L, 4L, 3L, 3L, 3L, 4L, 3L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 3L, 3L, 3L, 3L, 3L,
3L, 3L), .Label = c("schlecht", "befriedigend", "gut", "exzellent"
), class = "factor"), Dummy.Sektor = structure(c(2L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L), .Label = c("Energie", "Material"), class = "factor")), row.names = c("1209-2011",
"1209-2012", "1209-2013", "1209-2014", "1209-2015", "1209-2016",
"1209-2017", "1380-2011", "1380-2012", "1380-2013", "1380-2014",
"1380-2015", "1380-2016", "1380-2017", "1678-2011", "1678-2012",
"1678-2013", "1678-2014", "1678-2015", "1678-2016", "1678-2017",
"1913-2011", "1913-2012", "1913-2013", "1913-2014", "1913-2015",
"1913-2016", "1913-2017", "1988-2011", "1988-2012", "1988-2013",
"1988-2014", "1988-2015", "1988-2016", "1988-2017", "2991-2011",
"2991-2012", "2991-2013", "2991-2014", "2991-2015", "2991-2016",
"2991-2017", "4213-2011", "4213-2012", "4213-2013", "4213-2014",
"4213-2015", "4213-2016", "4213-2017", "4503-2011", "4503-2012",
"4503-2013", "4503-2014", "4503-2015", "4503-2016", "4503-2017",
"4510-2011", "4510-2012", "4510-2013", "4510-2014", "4510-2015",
"4510-2016", "4510-2017", "5439-2011", "5439-2012", "5439-2013",
"5439-2014", "5439-2015", "5439-2016", "5439-2017", "5581-2011",
"5581-2012", "5581-2013", "5581-2014", "5581-2015", "5581-2016",
"5581-2017", "5667-2011", "5667-2012", "5667-2013", "5667-2014",
"5667-2015", "5667-2016", "5667-2017", "6078-2011", "6078-2012",
"6078-2013", "6078-2014", "6078-2015", "6078-2016", "6078-2017",
"6104-2011", "6104-2012", "6104-2013", "6104-2014", "6104-2015",
"6104-2016", "6104-2017", "7017-2011", "7017-2012", "7017-2013",
"7017-2014", "7017-2015", "7017-2016", "7017-2017", "7881-2011",
"7881-2012", "7881-2013", "7881-2014", "7881-2015", "7881-2016",
"7881-2017", "8030-2011", "8030-2012", "8030-2013", "8030-2014",
"8030-2015", "8030-2016", "8030-2017"), class = c("pdata.frame",
"data.frame"), index = structure(list(gvkey = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L, 13L,
13L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 17L, 17L, 17L, 17L,
17L, 17L, 17L), .Label = c("1209", "1380", "1678", "1913", "1988",
"2991", "4213", "4503", "4510", "5439", "5581", "5667", "6078",
"6104", "7017", "7881", "8030"), class = "factor"), Year = structure(c(1L,
2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L,
4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L,
6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L,
3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L,
5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L,
7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 1L,
2L, 3L, 4L, 5L, 6L, 7L), .Label = c("2011", "2012", "2013", "2014",
"2015", "2016", "2017"), class = "factor")), row.names = c(NA,
119L), class = c("pindex", "data.frame")))