我正在尝试应用我编写的一个函数,该函数使用“pls”包制作模型,然后使用它来预测几个测试集(在本例中为 9),返回每个测试集的 R2、RMSEP 和预测偏差 n从数据框中选择的子集数。功能是
cpo<-function(data,newdata1,newdata2,newdata3,newdata4,newdata5,newdata6,newdata7,newdata8,newdata9){
data.pls<-plsr(protein~.,8,data=data,validation="LOO")#making a pls model
newdata1.pred<-predict(data.pls,8,newdata=newdata1) #using the model to predict test sets
newdata2.pred<-predict(data.pls,8,newdata=newdata2)
newdata3.pred<-predict(data.pls,8,newdata=newdata3)
newdata4.pred<-predict(data.pls,8,newdata=newdata4)
newdata5.pred<-predict(data.pls,8,newdata=newdata5)
newdata6.pred<-predict(data.pls,8,newdata=newdata6)
newdata7.pred<-predict(data.pls,8,newdata=newdata7)
newdata8.pred<-predict(data.pls,8,newdata=newdata8)
newdata9.pred<-predict(data.pls,8,newdata=newdata9)
pred.bias1<-mean(newdata1.pred-newdata1[742]) #calculating the prediction bias
pred.bias2<-mean(newdata2.pred-newdata2[742])
pred.bias3<-mean(newdata3.pred-newdata3[742]) #[742] reference values in column742
pred.bias4<-mean(newdata4.pred-newdata4[742])
pred.bias5<-mean(newdata5.pred-newdata5[742])
pred.bias6<-mean(newdata6.pred-newdata6[742])
pred.bias7<-mean(newdata7.pred-newdata7[742])
pred.bias8<-mean(newdata8.pred-newdata8[742])
pred.bias9<-mean(newdata9.pred-newdata9[742])
r<-c(R2(data.pls,"train"),RMSEP(data.pls,"train"),pred.bias1,
pred.bias2,pred.bias3,pred.bias4,pred.bias5,pred.bias6,
pred.bias7,pred.bias8,pred.bias9)
return(r)
}
选择 n 个子集(基于我的问题 [1] 的答案:通过对所有子集采用不同的行间隔和 应用函数并将 cpo 函数应用于我尝试的每个子集来选择几个子集
根据@Gavin 建议编辑
FO03 <- function(data, nSubsets, nSkip){
outList <- vector("list", 11)
names(outList) <- c("R2train","RMSEPtrain", paste("bias", 1:9, sep = ""))
sub <- vector("list", length = nSubsets) # sub is the n number subsets created by selecting rows
names(sub) <- c( paste("sub", 1:nSubsets, sep = ""))
totRow <- nrow(data)
for (i in seq_len(nSubsets)) {
rowsToGrab <- seq(i, totRow, nSkip)
sub[[i]] <- data[rowsToGrab ,]
}
for(i in sub) { #for every subset in sub i want to apply cpo
outList[[i]] <- cpo(data=sub,newdata1=gag11p,newdata2=gag12p,newdata3=gag13p,
newdata4=gag21p,newdata5=gag22p,newdata6=gag23p,
newdata7=gag31p,newdata8=gag32p,newdata9=gag33p) #new data are test sets loaded in the workspace
}
return(outlist)
}
FOO3(GAGp,10,10)
当我尝试这个时,我不断收到“eval 中的错误(expr,envir,enclos):找不到对象“蛋白质”。蛋白质用于 cpo 的 plsr 公式中,并且在数据集中。然后我尝试直接使用 plsr 函数,如下所示
FOO4 <- function(data, nSubsets, nSkip){
outList <- vector("list", 11)
names(outList) <- c("R2train","RMSEPtrain", paste("bias", 1:9, sep = ""))
sub <- vector("list", length = nSubsets)
names(sub) <- c( paste("sub", 1:nSubsets, sep = ""))
totRow <- nrow(data)
for (i in seq_len(nSubsets)) {
rowsToGrab <- seq(i, totRow, nSkip)
sub[[i]] <- data[rowsToGrab ,]
}
cal<-vector("list", length=nSubsets) #for each subset in sub make a pls model for protein
names(cal)<-c(paste("cal",1:nSubsets, sep=""))
for(i in sub) {
cal[[i]] <- plsr(protein~.,8,data=sub,validation="LOO")
}
return(outlist) # return is just used to end script and check if error still occurs
}
FOO4(gagpm,10,10)
当我尝试这个时,我得到了同样的错误'eval(expr,envir,enclos)中的错误:找不到对象'蛋白质'。任何有关如何处理此问题并使该功能正常工作的建议将不胜感激。