#Let the random-forest model be: *rf_model*
from kale.common.serveutils import serve
kfserver = serve(rf_model) #model is now being deployed
#prepare data for prediction
data = [row.tolist() for _, row in
train_df[predictor_var].head(10).iterrows()]
data_json = json.dumps({"instances": data})
#prediciton using deployed model:
pred = kfserver.predict(data_json)
问题1:返回的pred是类标签:0/1。如何返回概率?
学习后我尝试了以下方法:kale.common.serveutils.predict
#let HOST be the host name of deployed model
#let the URL of calling the deployed model be: http://xxx:predict
headers = {"content-type": "application/json", "Host": HOST}
pred_2 = requests.post(url = URL, data=data_json, headers=headers)
问题2:但不清楚,在哪里设置参数,所以pred_2会返回概率?