1

上下文:将 an 转换.iges.vtk.

我有以下Ax^2+Bxy+Cy^2+Dx+Ey+F=0代表圆锥截面的等式。

给出了参数A~F我想在圆锥截面上找到点,这样我就可以用线把它们连接起来,然后做一个网格。

我需要这些点而不是仅仅使用matplotlib Ellipse的原因是因为我正在创建一个网格而不是一个绘图。

它在 3 维空间中,但我首先在 xy 平面上得到点,然后使用仿射变换将其发送到 3 维空间。

问题:How do I find points given an implicit equation?

4

1 回答 1

1

为了避免在这方面花费太多时间,我编写了一些似乎可以处理一般省略号的代码。根据需要,它可以扩展为其他圆锥曲线。该代码采用椭圆的一般二次方程的系数和要在椭圆上生成的多个所需点,并在椭圆上生成一组点。

import numpy as np

def equation(conic, points):
     '''
     equation of a conic with coefficients 'conic' 
     applied to a matrix number_of_points x 3 whose each row is the coordinates
     of each point
     '''
     c = np.array(conic)
     x = np.array([points[:,0]**2, points[:, 0]*points[:,1], points[:,1]**2, points[:,0], points[:,1], np.ones(points.shape[0])])
     return c.dot(x)
 
def equation_to_matrix(eq):
    '''
    eq[0]*x**2 + eq[1]*x*y + eq[2]*y**2 + eq[3]*x + eq[4]*y + eq[5] = 0
    '''
    return np.array([[2*eq[0],   eq[1],   eq[3]],
                     [  eq[1], 2*eq[2],   eq[4]],
                     [  eq[3],   eq[4], 2*eq[5]]]) / 2

def solve_quadratic(a, b, c):
    '''
    solves
    ax^2 + bx + c = 0
    '''
    D = b**2 - 4*a*c
    D = np.sqrt(D)
    return (-b-D)/(2*a), (-b+D)/(2*a)

def eigen2(S):
    '''
    solves the eigen-decomposition problem
    for a 2x2 symmetric matrix
    '''
    k1, k2 = solve_quadratic(1, -S[0,0]-S[1,1], S[0,0]*S[1,1] - S[0,1]*S[1,0])
    u1 = np.array([-S[0,1], S[0,0]-k1, 0])
    u1 = u1 / np.sqrt(u1.dot(u1))
    u2 = np.array([-u1[1], u1[0], 0])
    return np.array([k1, k2]), np.array([u1, u2, np.array([0,0,1])]).T

def center(conic_matrix):
    center = np.linalg.solve(conic_matrix, np.array([0,0,1]))
    return center/center[2]
    
def find_rotation_and_translation(conic_matrix):
    '''
    conic = c[0]x^2 + c[1]*xy + c[2]*y^2 + c[3]*x + c[4]*y + c[5] = 0
    the result is rotation U such that U.T C U = diag
    '''
    k, U = eigen2(conic_matrix)
    U[:,2] = center(conic_matrix)
    return U, k

def find_transform(conic):
    C = equation_to_matrix(conic)
    U, k = find_rotation_and_translation(C)
    C = (U.T).dot(C.dot(U))
    C = - C / C[2,2]
    k = np.array([1/np.sqrt(C[0,0]), 1/np.sqrt(C[1,1]), 1])
    return U.dot(np.diag(k))

def generate_points_on(conic, num_points):
    '''
    conic = [c[0], c[1], c[2], c[3], c[4], c[5]]
    coefficients of the qudaratic equation:
    conic: c[0]x^2 + c[1]*xy + c[2]*y^2 + c[3]*x + c[4]*y + c[5] = 0
    result is the affine transformation (scaling, rotation, translation)
    that maps the unit circle to the ellipse defined by the coefficients
    'conic' 
    '''
    cos_ = np.cos(2*np.pi* np.arange(0, num_points)/ num_points)
    sin_ = np.sin(2*np.pi* np.arange(0, num_points)/ num_points)
    U = find_transform(conic)
    points = np.array([cos_, sin_, np.ones(num_points)])
    return ((U.dot(points)).T)[:,[0,1]]

'''
Test:
'''

'''
Ellipse with equation whose coefficients are in the list E.
The ellipse has semi-major axes 2 and 1,
it is rotated 60 deg from the horizontal,
and its center is at (1, 4)
'''   
E = [ 3.25,  -2.59807621, 1.75, -23.40192379, 6.89230485,   39.35769515]


'''
U maps points from unit circle to points on E
'''
U = find_transform(E)

print(U)

'''
the set of points on the ellipse E
'''
p = generate_points_on(E, num_points = 20)
print(p)


'''
check that the points p lie on the ellipse E
'''
print(equation(E, p).round(10))

'''
plot
'''
fig = plt.figure()
ax = fig.add_subplot()
ax.plot(p[:,0], p[:,1], 'ro')
ax.set_aspect('equal')
plt.show()

在此处输入图像描述

于 2021-12-02T21:29:19.717 回答