使用数据框中可用的标准误差围绕多条线图生成平滑的误差线。我已经在数据框中有标准错误,所以我可以使用数据 +/- se。
使用数据框中可用的标准误差围绕多条线图生成平滑的误差线。我已经在数据框中有标准错误,所以我可以使用数据 +/- se。
data10 <- structure(list(Group = c("Visible", "Visible", "Visible", "Visible",
"Visible", "Visible", "Visible", "Visible", "Visible", "Visible",
"Visible", "Visible", "Visible", "Visible", "Visible", "Visible",
"Visible", "Visible", "Visible", "Visible", "Visible", "Visible",
"Visible", "Visible", "Visible", "Visible", "Visible", "Visible",
"Visible", "Visible", "Visible", "Visible", "Remembered", "Remembered",
"Remembered", "Remembered", "Remembered", "Remembered", "Remembered",
"Remembered", "Remembered", "Remembered", "Remembered", "Remembered",
"Remembered", "Remembered", "Remembered", "Remembered", "Remembered",
"Remembered", "Remembered", "Remembered", "Remembered", "Remembered",
"Remembered", "Remembered", "Remembered", "Remembered", "Remembered",
"Remembered", "Remembered", "Remembered", "Remembered", "Remembered",
"Visible", "Visible", "Visible", "Visible", "Visible", "Visible",
"Visible", "Visible", "Visible", "Visible", "Visible", "Visible",
"Visible", "Visible", "Visible", "Visible", "Visible", "Visible",
"Visible", "Visible", "Visible", "Visible", "Visible", "Visible",
"Visible", "Visible", "Visible", "Visible", "Visible", "Visible",
"Visible", "Visible", "Remembered", "Remembered", "Remembered",
"Remembered", "Remembered", "Remembered", "Remembered", "Remembered",
"Remembered", "Remembered", "Remembered", "Remembered", "Remembered",
"Remembered", "Remembered", "Remembered", "Remembered", "Remembered",
"Remembered", "Remembered", "Remembered", "Remembered", "Remembered",
"Remembered", "Remembered", "Remembered", "Remembered", "Remembered",
"Remembered", "Remembered", "Remembered", "Remembered"), Condition = c("CEN",
"CEN", "CEN", "CEN", "CEN", "CEN", "CEN", "CEN", "CEN", "CEN",
"CEN", "CEN", "CEN", "CEN", "CEN", "CEN", "IPS", "IPS", "IPS",
"IPS", "IPS", "IPS", "IPS", "IPS", "IPS", "IPS", "IPS", "IPS",
"IPS", "IPS", "IPS", "IPS", "CEN", "CEN", "CEN", "CEN", "CEN",
"CEN", "CEN", "CEN", "CEN", "CEN", "CEN", "CEN", "CEN", "CEN",
"CEN", "CEN", "IPS", "IPS", "IPS", "IPS", "IPS", "IPS", "IPS",
"IPS", "IPS", "IPS", "IPS", "IPS", "IPS", "IPS", "IPS", "IPS",
"CEN", "CEN", "CEN", "CEN", "CEN", "CEN", "CEN", "CEN", "CEN",
"CEN", "CEN", "CEN", "CEN", "CEN", "CEN", "CEN", "IPS", "IPS",
"IPS", "IPS", "IPS", "IPS", "IPS", "IPS", "IPS", "IPS", "IPS",
"IPS", "IPS", "IPS", "IPS", "IPS", "CEN", "CEN", "CEN", "CEN",
"CEN", "CEN", "CEN", "CEN", "CEN", "CEN", "CEN", "CEN", "CEN",
"CEN", "CEN", "CEN", "IPS", "IPS", "IPS", "IPS", "IPS", "IPS",
"IPS", "IPS", "IPS", "IPS", "IPS", "IPS", "IPS", "IPS", "IPS",
"IPS"), test = c("Pre-test", "Pre-test", "Pre-test", "Pre-test",
"Pre-test", "Pre-test", "Pre-test", "Pre-test", "Post-test",
"Post-test", "Post-test", "Post-test", "Post-test", "Post-test",
"Post-test", "Post-test", "Pre-test", "Pre-test", "Pre-test",
"Pre-test", "Pre-test", "Pre-test", "Pre-test", "Pre-test", "Post-test",
"Post-test", "Post-test", "Post-test", "Post-test", "Post-test",
"Post-test", "Post-test", "Pre-test", "Pre-test", "Pre-test",
"Pre-test", "Pre-test", "Pre-test", "Pre-test", "Pre-test", "Post-test",
"Post-test", "Post-test", "Post-test", "Post-test", "Post-test",
"Post-test", "Post-test", "Pre-test", "Pre-test", "Pre-test",
"Pre-test", "Pre-test", "Pre-test", "Pre-test", "Pre-test", "Post-test",
"Post-test", "Post-test", "Post-test", "Post-test", "Post-test",
"Post-test", "Post-test", "Pre-test", "Pre-test", "Pre-test",
"Pre-test", "Pre-test", "Pre-test", "Pre-test", "Pre-test", "Post-test",
"Post-test", "Post-test", "Post-test", "Post-test", "Post-test",
"Post-test", "Post-test", "Pre-test", "Pre-test", "Pre-test",
"Pre-test", "Pre-test", "Pre-test", "Pre-test", "Pre-test", "Post-test",
"Post-test", "Post-test", "Post-test", "Post-test", "Post-test",
"Post-test", "Post-test", "Pre-test", "Pre-test", "Pre-test",
"Pre-test", "Pre-test", "Pre-test", "Pre-test", "Pre-test", "Post-test",
"Post-test", "Post-test", "Post-test", "Post-test", "Post-test",
"Post-test", "Post-test", "Pre-test", "Pre-test", "Pre-test",
"Pre-test", "Pre-test", "Pre-test", "Pre-test", "Pre-test", "Post-test",
"Post-test", "Post-test", "Post-test", "Post-test", "Post-test",
"Post-test", "Post-test"), trial = c(1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16), Variables = c("Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Eye movement time", "Eye movement time", "Eye movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time", "Hand movement time", "Hand movement time",
"Hand movement time"), Eye_Mx = c(1.150583333, 1.273916667, 1.213083333,
1.065166667, 1.2373, 1.19925, 0.93675, 0.950833333, 0.616916667,
0.440416667, 0.598083333, 0.618583333, 0.693545455, 0.667583333,
0.873666667, 0.51825, 1.220454545, 1.034583333, 0.874583333,
1.015166667, 0.532222222, 0.714454545, 0.905583333, 0.898333333,
0.641666667, 0.787666667, 0.609833333, 0.623583333, 0.69925,
0.7188, 0.61725, 0.661166667, 1.349, 1.585416667, 1.0145, 1.201090909,
0.810545455, 0.591090909, 1.1416, 0.697166667, 0.431166667, 0.804583333,
0.289666667, 0.63875, 0.46825, 0.633, 0.418833333, 0.691166667,
1.219125, 0.7033, 0.524666667, 0.724818182, 0.648583333, 0.639181818,
0.596583333, 0.509416667, 0.576272727, 0.483222222, 0.388222222,
0.647, 0.42575, 0.269818182, 0.488333333, 0.5903, 1.869083333,
2.066181818, 2.124166667, 2.31525, 2.0943, 1.93625, 1.786916667,
1.922583333, 1.470833333, 1.421454545, 1.519083333, 1.508833333,
1.575909091, 1.5135, 1.8025, 1.541, 1.800454545, 1.888666667,
1.85575, 2.201666667, 1.55725, 1.7781, 1.748, 1.767583333, 1.489333333,
1.4259, 1.436916667, 1.5855, 1.535666667, 1.4013, 1.3855, 1.356666667,
1.852888889, 2.463636364, 2.031, 2.195727273, 1.804454545, 1.709090909,
2.1938, 1.97625, 1.256833333, 1.704363636, 1.418083333, 1.371166667,
1.459166667, 1.46725, 1.183666667, 1.407, 2.348625, 1.8981, 1.973583333,
1.746727273, 1.6805, 1.963, 1.68075, 1.872583333, 1.345636364,
1.339222222, 1.311222222, 1.316833333, 1.215833333, 1.053636364,
1.415916667, 1.2292), sd = c(0.948671172, 0.678775831, 0.820965004,
0.771358286, 1.11350558, 0.598444974, 0.794668727, 0.824723627,
0.481933503, 0.314103185, 0.469586754, 0.576648697, 0.629203681,
0.528873667, 0.975212642, 0.406696922, 0.986302019, 0.821480975,
0.776634401, 0.804389643, 0.52690957, 0.881839936, 0.881676756,
0.842954149, 0.49820502, 0.551171205, 0.611370269, 0.630794947,
0.605911653, 0.612136659, 0.504005614, 0.478993231, 0.896792758,
1.545713396, 1.479810742, 1.481512366, 1.016337185, 0.827241616,
1.987092303, 0.874371549, 0.557526165, 1.312183015, 0.163762763,
1.081580084, 0.682258832, 0.99675364, 0.582176455, 1.069035235,
1.352635886, 1.003522136, 0.705413397, 0.93395362, 0.764277848,
0.989686599, 0.875251492, 0.582424316, 0.618786084, 0.971365119,
0.4453251, 1.057255968, 0.710771044, 0.157439397, 0.584064339,
0.966582301, 0.807429305, 0.578682092, 0.911954428, 1.146678771,
0.977409848, 0.7173858, 0.692368328, 0.84760684, 0.426626052,
0.392027133, 0.463031406, 0.346331904, 0.435984278, 0.625301164,
0.733525794, 0.468399014, 0.911551574, 0.845252338, 0.560227896,
1.191183013, 0.503701088, 0.686482249, 0.812501692, 0.649220856,
0.448065201, 0.520082782, 0.465629478, 0.601450142, 0.498518229,
0.432112652, 0.422273393, 0.374147354, 0.631002663, 1.659917846,
1.024954525, 1.202822771, 0.652806306, 0.768222032, 1.742846509,
0.782477781, 0.398411581, 0.98639944, 0.580826286, 0.781519247,
0.683742619, 0.717473487, 0.26632937, 0.748351886, 1.884740371,
0.875399141, 0.661320505, 0.703044393, 0.49535084, 0.954243365,
0.645801986, 1.293963499, 0.649359573, 0.623769945, 0.256283426,
0.8611224, 0.495113363, 0.158687285, 0.522609442, 0.635988959
), se = c(0.273857778, 0.195945704, 0.236992183, 0.222671957,
0.352121382, 0.172756183, 0.229401102, 0.238077204, 0.139122219,
0.090673779, 0.135558019, 0.16646414, 0.189712048, 0.152672677,
0.281519641, 0.117403289, 0.297381248, 0.237141131, 0.22419504,
0.232207288, 0.175636523, 0.265884745, 0.254518156, 0.243339902,
0.143819401, 0.159109422, 0.176487395, 0.182094816, 0.174911628,
0.193574608, 0.145493889, 0.138273435, 0.298930919, 0.446209023,
0.467957245, 0.446692786, 0.306437191, 0.249422732, 0.62837376,
0.252409325, 0.160943941, 0.378794609, 0.047274238, 0.312225276,
0.19695116, 0.287737991, 0.168059866, 0.30860389, 0.478229004,
0.317341563, 0.203635307, 0.281597612, 0.220628011, 0.298401737,
0.252663342, 0.168131418, 0.186571024, 0.323788373, 0.1484417,
0.305203509, 0.205181927, 0.047469764, 0.168604852, 0.305660162,
0.233084763, 0.174479216, 0.263258567, 0.331017649, 0.309084133,
0.207091442, 0.19986952, 0.244683019, 0.123156333, 0.118200628,
0.133665654, 0.099977409, 0.131454206, 0.180508898, 0.211750657,
0.135215148, 0.274843141, 0.244003332, 0.161723863, 0.343864917,
0.178085227, 0.217084748, 0.244978478, 0.187413918, 0.129345282,
0.164464616, 0.134415652, 0.173623701, 0.143909817, 0.136646019,
0.121899828, 0.108007038, 0.210334221, 0.500484062, 0.32411908,
0.362664711, 0.196828507, 0.231627658, 0.551136458, 0.225881879,
0.115011517, 0.297410621, 0.167670106, 0.225605174, 0.197379493,
0.207116755, 0.076882667, 0.216030581, 0.666356349, 0.276825515,
0.190906786, 0.21197586, 0.14299547, 0.2877152, 0.186426975,
0.373535087, 0.195789278, 0.207923315, 0.085427809, 0.248584625,
0.142926917, 0.047846017, 0.150864351, 0.201117368), ci = c(0.602756906,
0.431273588, 0.521616278, 0.490097673, 0.796553907, 0.380233796,
0.504908421, 0.524004393, 0.306205939, 0.199571642, 0.298361189,
0.366385102, 0.422704785, 0.336030297, 0.619620551, 0.258402896,
0.662606712, 0.52194411, 0.493449956, 0.511084796, 0.405018549,
0.59242813, 0.560190685, 0.535587514, 0.316544368, 0.350197476,
0.388446137, 0.400787988, 0.384977898, 0.437896186, 0.320229889,
0.304337779, 0.689335936, 0.982099437, 1.058592834, 0.99529355,
0.682784611, 0.555748479, 1.421480202, 0.555549178, 0.354235225,
0.833721312, 0.104049895, 0.6872032, 0.433486581, 0.633307048,
0.369897272, 0.679232583, 1.1308319, 0.71787649, 0.448198289,
0.627438579, 0.485598977, 0.664880504, 0.556108267, 0.370054755,
0.415706148, 0.746657327, 0.342307174, 0.671748394, 0.451602376,
0.105769226, 0.371096776, 0.691451324, 0.513016105, 0.388763919,
0.5794282, 0.728564932, 0.699196885, 0.455805192, 0.439909848,
0.538543693, 0.271065261, 0.263367411, 0.29419612, 0.220048794,
0.292898224, 0.397297405, 0.466060055, 0.297606535, 0.61238868,
0.537047714, 0.355951823, 0.756841578, 0.421104648, 0.491079817,
0.545846064, 0.412495252, 0.284687047, 0.37204481, 0.295846856,
0.382143188, 0.316743371, 0.30911477, 0.268299713, 0.237721887,
0.485031584, 1.115147982, 0.733208298, 0.808067333, 0.438561244,
0.516098584, 1.246757287, 0.497162663, 0.253138642, 0.66267216,
0.369039416, 0.49655364, 0.434429334, 0.455860905, 0.169217609,
0.475480104, 1.575682382, 0.626222821, 0.420183003, 0.47231165,
0.314730908, 0.641069416, 0.410323006, 0.822145184, 0.436245697,
0.479472024, 0.19699688, 0.54713107, 0.314580023, 0.106607569,
0.332050198, 0.454959094)), class = c("spec_tbl_df", "tbl_df",
"tbl", "data.frame"), row.names = c(NA, -128L), spec = structure(list(
cols = list(Group = structure(list(), class = c("collector_character",
"collector")), Condition = structure(list(), class = c("collector_character",
"collector")), test = structure(list(), class = c("collector_character",
"collector")), trial = structure(list(), class = c("collector_double",
"collector")), Variables = structure(list(), class = c("collector_character",
"collector")), Eye_Mx = structure(list(), class = c("collector_double",
"collector")), sd = structure(list(), class = c("collector_double",
"collector")), se = structure(list(), class = c("collector_double",
"collector")), ci = structure(list(), class = c("collector_double",
"collector"))), default = structure(list(), class = c("collector_guess",
"collector")), skip = 1), class = "col_spec"))
p <- ggplot(data10, aes(x = trial, y = Eye_Mx)) +
geom_line(aes(color = Variables, linetype = Variables), lwd=1.2) +
scale_color_manual(values = c("darkred", "steelblue")) + facet_grid(Condition ~ Group)+ theme_bw() + xlab("Trial Pre- / Post-test") + ylab("Hand and Eye Movement time (s)") +
scale_x_continuous(limits = c(1,16), breaks = seq(1,16,1)) + theme(axis.text.x = element_text(size = 10,face="bold", angle = 90),#, angle = 10, hjust = .5, vjust = .5),
axis.text.y = element_text(size = 10, face = "bold"),
axis.title.y = element_text(vjust= 1.8, size = 16),
axis.title.x = element_text(vjust= -0.5, size = 16),
axis.title = element_text(face = "bold")) + theme(legend.position="top")+
geom_vline(xintercept=8.5, linetype="dashed", color = "black", size=1.5)
p + guides(fill=guide_legend(title="Variables:")) + theme(legend.text=element_text(size=14),legend.title=element_text(size=14) ) +
theme(strip.text = element_text(face="bold", size=12))