只是data.table
:
如果没有设置键,那么
data2 <- data[CJ(Date, Card, unique = TRUE), on = .(Date, Card)]
data2
# Date Card A
# <char> <num> <num>
# 1: 2020-01-01 1 1.37095845
# 2: 2020-01-01 2 -0.56469817
# 3: 2020-01-01 3 0.36312841
# 4: 2020-02-01 1 0.63286260
# 5: 2020-02-01 2 NA
# 6: 2020-02-01 3 0.40426832
# 7: 2020-03-01 1 -0.10612452
# 8: 2020-03-01 2 1.51152200
# 9: 2020-03-01 3 -0.09465904
(更新/简化,感谢@sindri_baldur!)
如果设置了键,则可以使用@Frank 的方法:
data2 <- data[ do.call(CJ, c(mget(key(data)), unique = TRUE)), ]
从这里,您可以nafill
根据需要使用,也许
data2[, A := nafill(A, type = "locf"), by = .(Card)]
# Date Card A
# <char> <num> <num>
# 1: 2020-01-01 1 1.37095845
# 2: 2020-01-01 2 -0.56469817
# 3: 2020-01-01 3 0.36312841
# 4: 2020-02-01 1 0.63286260
# 5: 2020-02-01 2 -0.56469817
# 6: 2020-02-01 3 0.40426832
# 7: 2020-03-01 1 -0.10612452
# 8: 2020-03-01 2 1.51152200
# 9: 2020-03-01 3 -0.09465904
(如何填写取决于您对数据上下文的了解;它可能很容易by=.(Date)
,或者某种形式的插补。)
更新:上面对可能的组合进行了扩展,可能会填充到特定的跨度之外,在这种情况下,人们可能会看到:Card
data <- data[-1,]
data[CJ(Date, Card, unique = TRUE), on = .(Date, Card)]
# Date Card A
# <char> <num> <num>
# 1: 2020-01-01 1 NA
# 2: 2020-01-01 2 -0.42225588
# 3: 2020-01-01 3 -0.12235017
# 4: 2020-02-01 1 0.18819303
# 5: 2020-02-01 2 NA
# 6: 2020-02-01 3 0.11916096
# 7: 2020-03-01 1 -0.02509255
# 8: 2020-03-01 2 0.10807273
# 9: 2020-03-01 3 -0.48543524
我认为有两种方法可以解决这个问题:
执行上述代码,然后删除NA
每组的前导(和尾随)s:
data[CJ(Date, Card, unique = TRUE), on = .(Date, Card)
][, .SD[ !is.na(A) | !seq_len(.N) %in% c(1, .N),], by = Card]
# Card Date A
# <num> <char> <num>
# 1: 1 2020-02-01 0.18819303
# 2: 1 2020-03-01 -0.02509255
# 3: 2 2020-01-01 -0.42225588
# 4: 2 2020-02-01 NA
# 5: 2 2020-03-01 0.10807273
# 6: 3 2020-01-01 -0.12235017
# 7: 3 2020-02-01 0.11916096
# 8: 3 2020-03-01 -0.48543524
完全不同的方法(假设Date
-class,上面没有严格要求):
data[,Date := as.Date(Date)]
data[data[, .(Date = do.call(seq, c(as.list(range(Date)), by = "month"))),
by = .(Card)],
on = .(Date, Card)]
# Date Card A
# <Date> <num> <num>
# 1: 2020-01-01 2 -0.42225588
# 2: 2020-02-01 2 NA
# 3: 2020-03-01 2 0.10807273
# 4: 2020-01-01 3 -0.12235017
# 5: 2020-02-01 3 0.11916096
# 6: 2020-03-01 3 -0.48543524
# 7: 2020-02-01 1 0.18819303
# 8: 2020-03-01 1 -0.02509255