1

我在 Google Colab 上运行 FastGAN ( https://github.com/ogeasslbc/FastGAN-pytorch ),现在尝试从网络生成的已保存 .pth 恢复训练。但是,它不断抛出此错误:

回溯(最近一次通话最后):
  文件“train.py”,第 202 行,在
    火车(参数)
  文件“train.py”,第 117 行,在火车中
    netG.load_state_dict(ckpt['g'])
  文件“/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py”,第 1407 行,在 load_state_dict
    self.__class__.__name__, "\n\t".join(error_msgs)))
RuntimeError:为生成器加载 state_dict 时出错:
    state_dict 中缺少键:“init.init.0.weight_orig”、“init.init.0.weight”、“init.init.0.weight_u”、“init.init.0.weight_orig”、“init .init.0.weight_u”、“init.init.0.weight_v”、“init.init.1.weight”、“init.init.1.bias”、“init.init.1.running_mean”、“init .init.1.running_var”、“feat_8.​​1.weight_orig”、“feat_8.​​1.weight”、“feat_8.​​1.weight_u”、“feat_8.​​1.weight_orig”、“feat_8.​​1.weight_u”、“feat_8 .1.weight_v”、“feat_8.​​2.weight”、“feat_8.​​3.weight”、“feat_8.​​3.bias”、“feat_8.​​3.running_mean”、“feat_8.​​3.running_var”、“feat_8.​​5 .weight_orig”、“feat_8.​​5.weight”、“feat_8.​​5.weight_u”、“feat_8.​​5.weight_orig”、“feat_8.​​5.weight_u”、“feat_8.​​5.weight_v”、“feat_8.​​6.weight”、“feat_8.​​7.weight”、“feat_8.​​7.bias”、“feat_8.​​7.running_mean”、“feat_8. 7.running_var”、“feat_16.1.weight_orig”、“feat_16.1.weight”、“feat_16.1.weight_u”、“feat_16.1.weight_orig”、“feat_16.1.weight_u”、“feat_16.1”。 weight_v”、“feat_16.2.weight”、“feat_16.2.bias”、“feat_16.2.running_mean”、“feat_16.2.running_var”、“feat_32.1.weight_orig”、“feat_32.1.weight” ,“feat_32.1.weight_u”,“feat_32.1.weight_orig”,“feat_32.1.weight_u”,“feat_32.1.weight_v”,“feat_32.2.weight”,“feat_32.3.weight”,“ feat_32.3.bias", "feat_32.3.running_mean",“feat_32.3.running_var”、“feat_32.5.weight_orig”、“feat_32.5.weight”、“feat_32.5.weight_u”、“feat_32.5.weight_orig”、“feat_32.5.weight_u”、“feat_32” .5.weight_v”、“feat_32.6.weight”、“feat_32.7.weight”、“feat_32.7.bias”、“feat_32.7.running_mean”、“feat_32.7.running_var”、“feat_64.1 .weight_orig”、“feat_64.1.weight”、“feat_64.1.weight_u”、“feat_64.1.weight_orig”、“feat_64.1.weight_u”、“feat_64.1.weight_v”、“feat_64.2.weight” ", "feat_64.2.bias", "feat_64.2.running_mean", "feat_64.2.running_var", "feat_128.1.weight_orig", "feat_128.1.weight", "feat_128.1.weight_u", "feat_128.1.weight_orig", "feat_128.1.weight_u”、“feat_128.1.weight_v”、“feat_128.2.weight”、“feat_128.3.weight”、“feat_128.3.bias”、“feat_128.3.running_mean”、“feat_128。 3.running_var”、“feat_128.5.weight_orig”、“feat_128.5.weight”、“feat_128.5.weight_u”、“feat_128.5.weight_orig”、“feat_128.5.weight_u”、“feat_128.5”。 weight_v”、“feat_128.6.weight”、“feat_128.7.weight”、“feat_128.7.bias”、“feat_128.7.running_mean”、“feat_128.7.running_var”、“feat_256.1.weight_orig” ,“feat_256.1.weight”,“feat_256.1.weight_u”,“feat_256.1.weight_orig”,“feat_256.1.weight_u”,“feat_256.1.weight_v”,“feat_256.2.weight”,“ feat_256.2.bias", "feat_256.2.running_mean”、“feat_256.2.running_var”、“se_64.main.1.weight_orig”、“se_64.main.1.weight”、“se_64.main.1.weight_u”、“se_64.main。 1.weight_orig”、“se_64.main.1.weight_u”、“se_64.main.1.weight_v”、“se_64.main.3.weight_orig”、“se_64.main.3.weight”、“se_64.main。 3.weight_u”、“se_64.main.3.weight_orig”、“se_64.main.3.weight_u”、“se_64.main.3.weight_v”、“se_128.main.1.weight_orig”、“se_128.main。 1.weight”、“se_128.main.1.weight_u”、“se_128.main.1.weight_orig”、“se_128.main.1.weight_u”、“se_128.main.1.weight_v”、“se_128.main。 3.weight_orig”、“se_128.main.3.weight”、“se_128.main.3.weight_u”、“se_128.main.3。weight_orig”、“se_128.main.3.weight_u”、“se_128.main.3.weight_v”、“se_256.main.1.weight_orig”、“se_256.main.1.weight”、“se_256.main.1。 weight_u”、“se_256.main.1.weight_orig”、“se_256.main.1.weight_u”、“se_256.main.1.weight_v”、“se_256.main.3.weight_orig”、“se_256.main.3。重量”、“se_256.main.3.weight_u”、“se_256.main.3.weight_orig”、“se_256.main.3.weight_u”、“se_256.main.3.weight_v”、“to_128.weight_orig”、“ to_128.weight”、“to_128.weight_u”、“to_128.weight_orig”、“to_128.weight_u”、“to_128.weight_v”、“to_big.weight_orig”、“to_big.weight”、“to_big.weight_u”、“to_big. weight_orig", "to_big.weight_u",“to_big.weight_v”、“feat_512​​.1.weight_orig”、“feat_512​​.1.weight”、“feat_512​​.1.weight_u”、“feat_512​​.1.weight_orig”、“feat_512​​.1.weight_u”、“feat_512​​.1” .weight_v”、“feat_512​​.2.weight”、“feat_512​​.3.weight”、“feat_512​​.3.bias”、“feat_512​​.3.running_mean”、“feat_512​​.3.running_var”、“feat_512​​.5.weight_orig” ”、“feat_512​​.5.weight”、“feat_512​​.5.weight_u”、“feat_512​​.5.weight_orig”、“feat_512​​.5.weight_u”、“feat_512​​.5.weight_v”、“feat_512​​.6.weight”、 “feat_512​​.7.weight”、“feat_512​​.7.bias”、“feat_512​​.7.running_mean”、“feat_512​​.7.running_var”、“se_512.main.1.weight_orig”、“se_512.main.1.weight ", "se_512.main.1。weight_u”、“se_512.main.1.weight_orig”、“se_512.main.1.weight_u”、“se_512.main.1.weight_v”、“se_512.main.3.weight_orig”、“se_512.main.3。重量”、“se_512.main.3.weight_u”、“se_512.main.3.weight_orig”、“se_512.main.3.weight_u”、“se_512.main.3.weight_v”、“feat_1024.1.weight_orig” ,“feat_1024.1.weight”,“feat_1024.1.weight_u”,“feat_1024.1.weight_orig”,“feat_1024.1.weight_u”,“feat_1024.1.weight_v”,“feat_1024.2.weight”,“ feat_1024.2.bias”、“feat_1024.2.running_mean”、“feat_1024.2.running_var”。se_512.main.3.weight"、"se_512.main.3.weight_u"、"se_512.main.3.weight_orig"、"se_512.main.3.weight_u"、"se_512.main.3.weight_v"、" feat_1024.1.weight_orig”、“feat_1024.1.weight”、“feat_1024.1.weight_u”、“feat_1024.1.weight_orig”、“feat_1024.1.weight_u”、“feat_1024.1.weight_v”、“feat_1024。 2.weight”、“feat_1024.2.bias”、“feat_1024.2.running_mean”、“feat_1024.2.running_var”。se_512.main.3.weight"、"se_512.main.3.weight_u"、"se_512.main.3.weight_orig"、"se_512.main.3.weight_u"、"se_512.main.3.weight_v"、" feat_1024.1.weight_orig”、“feat_1024.1.weight”、“feat_1024.1.weight_u”、“feat_1024.1.weight_orig”、“feat_1024.1.weight_u”、“feat_1024.1.weight_v”、“feat_1024。 2.weight”、“feat_1024.2.bias”、“feat_1024.2.running_mean”、“feat_1024.2.running_var”。weight_u”、“feat_1024.1.weight_v”、“feat_1024.2.weight”、“feat_1024.2.bias”、“feat_1024.2.running_mean”、“feat_1024.2.running_var”。weight_u”、“feat_1024.1.weight_v”、“feat_1024.2.weight”、“feat_1024.2.bias”、“feat_1024.2.running_mean”、“feat_1024.2.running_var”。
    state_dict 中的意外键:“module.init.init.0.weight_orig”、“module.init.init.0.weight_u”、“module.init.init.0.weight_v”、“module.init.init” .1.weight”、“module.init.init.1.bias”、“module.init.init.1.running_mean”、“module.init.init.1.running_var”、“module.init.init.1 .nu​​m_batches_tracked”、“module.feat_8.​​1.weight_orig”、“module.feat_8.​​1.weight_u”、“module.feat_8.​​1.weight_v”、“module.feat_8.​​2.weight”、“module.feat_8.​​3 .weight”、“module.feat_8.​​3.bias”、“module.feat_8.​​3.running_mean”、“module.feat_8.​​3.running_var”、“module.feat_8.​​3.num_batches_tracked”、“module.feat_8.​​5 .weight_orig"、"module.feat_8.​​5.weight_u"、"module.feat_8.​​5.weight_v"、"module.feat_8.​​6.weight”、“module.feat_8.​​7.weight”、“module.feat_8.​​7.bias”、“module.feat_8.​​7.running_mean”、“module.feat_8.​​7.running_var”、“ module.feat_8.​​7.num_batches_tracked”、“module.feat_16.1.weight_orig”、“module.feat_16.1.weight_u”、“module.feat_16.1.weight_v”、“module.feat_16.2.weight”、“ module.feat_16.2.bias”、“module.feat_16.2.running_mean”、“module.feat_16.2.running_var”、“module.feat_16.2.num_batches_tracked”、“module.feat_32.1.weight_orig”、“ module.feat_32.1.weight_u”、“module.feat_32.1.weight_v”、“module.feat_32.2.weight”、“module.feat_32.3.weight”、“module.feat_32.3.bias”、“ module.feat_32.3.running_mean", "module.feat_32.3.running_var”、“module.feat_32.3.num_batches_tracked”、“module.feat_32.5.weight_orig”、“module.feat_32.5.weight_u”、“module.feat_32.5.weight_v”、“module.feat_32.6。重量”、“module.feat_32.7.weight”、“module.feat_32.7.bias”、“module.feat_32.7.running_mean”、“module.feat_32.7.running_var”、“module.feat_32.7. num_batches_tracked”、“module.feat_64.1.weight_orig”、“module.feat_64.1.weight_u”、“module.feat_64.1.weight_v”、“module.feat_64.2.weight”、“module.feat_64.2。偏差”,“module.feat_64.2.running_mean”,“module.feat_64.2.running_var”,“module.feat_64.2.num_batches_tracked”,“module.feat_128.1.weight_orig”,“module.feat_128.1。 weight_u", "模块。feat_128.1.weight_v”、“module.feat_128.2.weight”、“module.feat_128.3.weight”、“module.feat_128.3.bias”、“module.feat_128.3.running_mean”、“模块。 feat_128.3.running_var”、“module.feat_128.3.num_batches_tracked”、“module.feat_128.5.weight_orig”、“module.feat_128.5.weight_u”、“module.feat_128.5.weight_v”、“模块。 feat_128.6.weight”、“module.feat_128.7.weight”、“module.feat_128.7.bias”、“module.feat_128.7.running_mean”、“module.feat_128.7.running_var”、“模块。 feat_128.7.num_batches_tracked”、“module.feat_256.1.weight_orig”、“module.feat_256.1.weight_u”、“module.feat_256.1.weight_v”、“module.feat_256.2.weight”、“模块。 feat_256.2.bias", "模块。feat_256.2.running_mean”、“module.feat_256.2.running_var”、“module.feat_256.2.num_batches_tracked”、“module.se_64.main.1.weight_orig”、“module.se_64.main.1.weight_u” ,“module.se_64.main.1.weight_v”,“module.se_64.main.3.weight_orig”,“module.se_64.main.3.weight_u”,“module.se_64.main.3.weight_v”,“ module.se_128.main.1.weight_orig”、“module.se_128.main.1.weight_u”、“module.se_128.main.1.weight_v”、“module.se_128.main.3.weight_orig”、“模块。 se_128.main.3.weight_u”、“module.se_128.main.3.weight_v”、“module.se_256.main.1.weight_orig”、“module.se_256.main.1.weight_u”、“module.se_256。 main.1.weight_v”、“module.se_256.main.3.weight_orig”、“module.se_256.main.3.weight_u”、“module.se_256.main.3.weight_v”、“module.to_128.weight_orig”、“module.to_128.weight_u”、“module.to_128.weight_v”、“module.to_big.weight_orig”、“模块。 to_big.weight_u”、“module.to_big.weight_v”、“module.feat_512​​.1.weight_orig”、“module.feat_512​​.1.weight_u”、“module.feat_512​​.1.weight_v”、“module.feat_512​​.2。重量”、“module.feat_512​​.3.weight”、“module.feat_512​​.3.bias”、“module.feat_512​​.3.running_mean”、“module.feat_512​​.3.running_var”、“module.feat_512​​.3。 num_batches_tracked”、“module.feat_512​​.5.weight_orig”、“module.feat_512​​.5.weight_u”、“module.feat_512​​.5.weight_v”、“module.feat_512​​.6.weight”、“module.feat_512​​.7”。重量”, ”module.feat_512​​.7.bias”、“module.feat_512​​.7.running_mean”、“module.feat_512​​.7.running_var”、“module.feat_512​​.7.num_batches_tracked”、“module.se_512.main.1.weight_orig” ,“module.se_512.main.1.weight_u”,“module.se_512.main.1.weight_v”,“module.se_512.main.3.weight_orig”,“module.se_512.main.3.weight_u”,“ module.se_512.main.3.weight_v”、“module.feat_1024.1.weight_orig”、“module.feat_1024.1.weight_u”、“module.feat_1024.1.weight_v”、“module.feat_1024.2.weight” 、“module.feat_1024.2.bias”、“module.feat_1024.2.running_mean”、“module.feat_1024.2.running_var”、“module.feat_1024.2.num_batches_tracked”。module.feat_512​​.7.running_var”、“module.feat_512​​.7.num_batches_tracked”、“module.se_512.main.1.weight_orig”、“module.se_512.main.1.weight_u”、“module.se_512.main。 1.weight_v”、“module.se_512.main.3.weight_orig”、“module.se_512.main.3.weight_u”、“module.se_512.main.3.weight_v”、“module.feat_1024.1.weight_orig” ,“module.feat_1024.1.weight_u”,“module.feat_1024.1.weight_v”,“module.feat_1024.2.weight”,“module.feat_1024.2.bias”,“module.feat_1024.2.running_mean” ,“module.feat_1024.2.running_var”,“module.feat_1024.2.num_batches_tracked”。module.feat_512​​.7.running_var”、“module.feat_512​​.7.num_batches_tracked”、“module.se_512.main.1.weight_orig”、“module.se_512.main.1.weight_u”、“module.se_512.main。 1.weight_v”、“module.se_512.main.3.weight_orig”、“module.se_512.main.3.weight_u”、“module.se_512.main.3.weight_v”、“module.feat_1024.1.weight_orig” ,“module.feat_1024.1.weight_u”,“module.feat_1024.1.weight_v”,“module.feat_1024.2.weight”,“module.feat_1024.2.bias”,“module.feat_1024.2.running_mean” ,“module.feat_1024.2.running_var”,“module.feat_1024.2.num_batches_tracked”。weight_u”、“module.se_512.main.1.weight_v”、“module.se_512.main.3.weight_orig”、“module.se_512.main.3.weight_u”、“module.se_512.main.3.weight_v” ,“module.feat_1024.1.weight_orig”,“module.feat_1024.1.weight_u”,“module.feat_1024.1.weight_v”,“module.feat_1024.2.weight”,“module.feat_1024.2.bias” 、“module.feat_1024.2.running_mean”、“module.feat_1024.2.running_var”、“module.feat_1024.2.num_batches_tracked”。weight_u”、“module.se_512.main.1.weight_v”、“module.se_512.main.3.weight_orig”、“module.se_512.main.3.weight_u”、“module.se_512.main.3.weight_v” ,“module.feat_1024.1.weight_orig”,“module.feat_1024.1.weight_u”,“module.feat_1024.1.weight_v”,“module.feat_1024.2.weight”,“module.feat_1024.2.bias” 、“module.feat_1024.2.running_mean”、“module.feat_1024.2.running_var”、“module.feat_1024.2.num_batches_tracked”。feat_1024.2.weight”、“module.feat_1024.2.bias”、“module.feat_1024.2.running_mean”、“module.feat_1024.2.running_var”、“module.feat_1024.2.num_batches_tracked”。feat_1024.2.weight”、“module.feat_1024.2.bias”、“module.feat_1024.2.running_mean”、“module.feat_1024.2.running_var”、“module.feat_1024.2.num_batches_tracked”。

知道这里可能会发生什么吗?

非常感谢您的帮助!

4

1 回答 1

1

这在更改nn.Module.

请注意,这里的大多数层键与加载状态字典中包含的层键的不同之处在于它们的前缀:字典中的所有键都有一个'module.'前缀。

一个快速的解决方法是去掉这个前缀。例如,您可以使用dict理解:

loaded_state = {k.replace('module.', ''): v for k, v in ckpt['g'].items()}
netG.load_state_dict(loaded_state)
于 2021-10-07T10:30:03.097 回答