这是一张财务图表。 我希望在画布(图形)图表上绘制数字,将 x 轴作为时间序列,将 y 轴作为价格,我在照片编辑器上设计的示例图像以说明我的观点也共享将用于绘图的数据。
谁能帮助我如何实现这个结果。下面的原始数据在 15 分钟内重新采样,也按价格分组(LTP - 最后交易价格)。
这是一张财务图表。 我希望在画布(图形)图表上绘制数字,将 x 轴作为时间序列,将 y 轴作为价格,我在照片编辑器上设计的示例图像以说明我的观点也共享将用于绘图的数据。
谁能帮助我如何实现这个结果。下面的原始数据在 15 分钟内重新采样,也按价格分组(LTP - 最后交易价格)。
Scatter(mode="text")
这是下面代码中的第二个跟踪import pandas as pd
import numpy as np
import plotly.graph_objects as go
# generate some sample data
df = (
pd.DataFrame(
index=pd.MultiIndex.from_product(
[
np.arange(326.75, 324.95, -0.05),
pd.date_range("24-sep-2021 09:00", freq="15min", periods=6),
],
names=["LTP", "Time"],
)
)
.reset_index()
.pipe(
lambda d: d.assign(
BuyVolume=np.random.choice(
np.concatenate([[0], np.random.randint(0, 1000, (len(d)))]),
len(d),
p=[0.9] + [0.1 / len(d) for _ in range(len(d))],
),
SellVolume=np.random.choice(
np.concatenate([[0], np.random.randint(0, 1000, (len(d)))]),
len(d),
p=[0.9] + [0.1 / len(d) for _ in range(len(d))],
),
)
)
)
print(df.head(20).to_markdown())
# create text to appear on chart
df = df.assign(
plotText=lambda d: d["BuyVolume"].astype(str) + "x" + d["SellVolume"].astype(str)
)
# only rows that have either a buy or sell volume
dfp = df.loc[df["plotText"].ne("0x0")]
# ranges for bars around the text
dfx = dfp.groupby("Time").agg(min=("LTP", "min"), max=("LTP", "max"))
fig = go.Figure(
[
go.Bar(
x=dfx.index,
y=dfx["max"] - dfx["min"],
base=dfx["min"],
marker={"color":"white", "line":{"color":"black", "width":3}}
),
go.Scatter(x=dfp["Time"], y=dfp["LTP"], text=dfp["plotText"], mode="text"),
],
)
fig.update_layout(showlegend=False, template="plotly_white")
LTP | 时间 | 购买量 | 卖出量 | |
---|---|---|---|---|
0 | 326.75 | 2021-09-24 09:00:00 | 0 | 0 |
1 | 326.75 | 2021-09-24 09:15:00 | 0 | 983 |
2 | 326.75 | 2021-09-24 09:30:00 | 0 | 74 |
3 | 326.75 | 2021-09-24 09:45:00 | 0 | 0 |
4 | 326.75 | 2021-09-24 10:00:00 | 0 | 0 |
5 | 326.75 | 2021-09-24 10:15:00 | 705 | 0 |
6 | 326.7 | 2021-09-24 09:00:00 | 0 | 0 |
7 | 326.7 | 2021-09-24 09:15:00 | 0 | 0 |
8 | 326.7 | 2021-09-24 09:30:00 | 0 | 0 |
9 | 326.7 | 2021-09-24 09:45:00 | 0 | 0 |
10 | 326.7 | 2021-09-24 10:00:00 | 0 | 0 |
11 | 326.7 | 2021-09-24 10:15:00 | 0 | 593 |
12 | 326.65 | 2021-09-24 09:00:00 | 0 | 630 |
13 | 326.65 | 2021-09-24 09:15:00 | 0 | 0 |
14 | 326.65 | 2021-09-24 09:30:00 | 0 | 968 |
15 | 326.65 | 2021-09-24 09:45:00 | 0 | 0 |
16 | 326.65 | 2021-09-24 10:00:00 | 0 | 0 |
17 | 326.65 | 2021-09-24 10:15:00 | 213 | 0 |
18 | 326.6 | 2021-09-24 09:00:00 | 0 | 0 |
19 | 326.6 | 2021-09-24 09:15:00 | 0 | 0 |
rangeslider
,rangeselector
来导航xaxisrangeslider
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import plotly.express as px
from pathlib import Path
import itertools
df = pd.read_csv(
Path.home().joinpath("Downloads").joinpath("security_chart_WIPRO-EQ.csv")
)
df["Time"] = pd.to_datetime(df["Time"])
# df = df.sort_values("Time").head(200)
fig = px.bar(
df.groupby("Time", as_index=False).agg(
base=("LTP", "min"), y=("LTP", lambda s: s.max() - s.min())
),
x="Time",
y="y",
base="base",
).update_traces(
hoverinfo="none",
hovertemplate="",
marker={"color": "white", "line": {"color": "black", "width": 1}},
)
fig.add_traces(
px.bar(
df.sort_values(["Time", "LTP"])
.groupby("Time")
.apply(
lambda d: d.assign(
y=(d["LTP"] - d["LTP"].shift()), color=np.linspace(0, 1, len(d))
)
),
x="Time",
y="y",
base="LTP",
hover_name="volume",
color="color",
hover_data={"color": False, "y": False},
).data
)
fig.update_layout(
xaxis={
"rangeselector": {
"buttons": [
dict(count=n, label=f"{n}hrs", step="hour", stepmode="backward")
for n in [2, 4, 6, 8]
]
},
"rangeslider": {"visible": True},
"range": [
df["Time"].min() - pd.Timedelta(minutes=15),
df["Time"].min() + pd.Timedelta(hours=4),
],
"rangebreaks": [
dict(bounds=[16, 9], pattern="hour"),
dict(bounds=["sat", "mon"]),
],
},
coloraxis={"showscale": False},
margin={"l": 0, "r": 0, "t": 0, "b": 0},
height=800,
)