我试图在我的 linux 机器上使用 LPOT 量化一个训练有素的模型。通过以下链接
https://github.com/intel/lpot/tree/master/examples/helloworld/tf_example1
我在 conf.yaml 文件中指定了数据集路径,之后我尝试量化模型,但最终出现以下错误。
ValueError:在 --root 匹配中找不到文件:/home/u77217/.keras/datasets/fashion-mnist/ - -of- *
数据集文件夹包含以下文件:
- t10k-images-idx3-ubyte.gz
- t10k-labels-idx1-ubyte.gz
- 火车图像-idx3-ubyte.gz
- 火车标签-idx1-ubyte.gz
我的 conf.yaml 文件看起来像这样
#
# Copyright (c) 2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
version: 1.0
model: # mandatory. used to specify model specific information.
name: mobilenet_v1
framework: tensorflow # mandatory. supported values are tensorflow, pytorch, pytorch_ipex, onnxrt_integer, onnxrt_qlinear or mxnet; allow new framework backend extension.
quantization: # optional. tuning constraints on model-wise for advance user to reduce tuning space.
calibration:
sampling_size: 20 # optional. default value is 100. used to set how many samples should be used in calibration.
dataloader:
dataset:
ImageRecord:
root: /home/u77217/.keras/datasets/fashion-mnist/ # NOTE: modify to calibration dataset location if needed
transform:
BilinearImagenet:
height: 224
width: 224
evaluation: # optional. required if user doesn't provide eval_func in lpot.Quantization.
accuracy: # optional. required if user doesn't provide eval_func in lpot.Quantization.
metric:
topk: 1 # built-in metrics are topk, map, f1, allow user to register new metric.
dataloader:
batch_size: 32
dataset:
ImageRecord:
root: /home/u77217/.keras/datasets/fashion-mnist/ # NOTE: modify to evaluation dataset location if needed
transform:
BilinearImagenet:
height: 224
width: 224