我正在尝试使用顶点 ai 构建 MLOps 管道,但未能部署它
@dsl.pipeline(
# Default pipeline root. You can override it when submitting the pipeline.
pipeline_root=PIPELINE_ROOT,
# A name for the pipeline. Use to determine the pipeline Context.
name="pipeline-test-1",
)
def pipeline(
serving_container_image_uri: str = "us-docker.pkg.dev/cloud-aiplatform/prediction/tf2-cpu.2-3:latest"
):
dataset_op = get_data()
train_op = train_xgb_model(dataset_op.outputs["dataset_train"])
train_knn = knn_model(dataset_op.outputs["dataset_train"])
eval_op = eval_model(
test_set=dataset_op.outputs["dataset_test"],
xgb_model=train_op.outputs["model_artifact"],
knn_model=train_knn.outputs['best_model_artifact']
)
endpoint_op = gcc_aip.ModelDeployOp(
project=PROJECT_ID,
model=eval_op.outputs["model_artifacts"],
machine_type="n1-standard-4",
)
#endpoint_op.after(eval_op)
compiler.Compiler().compile(pipeline_func=pipeline,
package_path='xgb_pipe.json')
gcc_aip.ModelDeployOp 抛出错误,应该传递正确的模型 ID 或名称