0

我目前正在尝试运行线性混合效应模型来估计压力如何随时间变化(超过 6 个时间点)。我注意到,当为我的样本中的每个人提取应力轨迹的截距和斜率时,这些因素之间存在高度相关性。但是,这似乎会根据时间的编码方式而改变……对为什么会发生这种情况有任何解释吗?您通常如何处理截距和斜率之间的共线性?任何建议将不胜感激。

下面的可重现示例:

#toy data code: https://rpubs.com/mlmcternan/BC-lme
options(width = 100)

library(lme4)
library(nlme)
library(dplyr)
library(kableExtra)
library(psych)
library(car)
library(ggplot2)
library(ggpubr)
library(tidyverse)

set.seed(222)

# simulate data
N <- 150
nobs <- 6
sigma <- 20
sig00 <- 10
b0 <- 80
b1 <- -6

ID = rep(1:N, each = nobs)

# time is coded 0 to 5 here

Time = rep(0:5, 150)
dat <- data.frame(ID, Time)
u0 <- rnorm(N, 0, sig00)
dat$u0 <- rep(u0, each=nobs)
dat$err <- rnorm(900, 0, sigma)
dat$Stress <- (b0 + u0)  + b1*dat$Time + dat$err
dat <- dat[,-c(3:4)]

# fit the model
fit1 <- lme(Stress ~ Time, random=~Time|ID, data=dat, correlation=corCAR1(form=~Time|ID), method="ML",na.action=na.exclude, control=list(opt="optim"))

# extract predictions
predictions <- data.frame(coef(fit1))
names(predictions) <- c("Intercept", "Slope")

# correlate intercept and slope
cor.test(predictions$Intercept, predictions$Slope, method = "pearson")

# Correlation between Intercept and Slope = 0.8057988 

# plot correlation
plot(predictions$Intercept, predictions$Slope, main="Scatterplot Example", 
     xlab="Intercept ", ylab="Slope ", pch=19)

# Recode time - 0 represents predicted mean at timepoint 2
dat$Time <-  rep(-1:4, 150)

fit1 <- lme(Stress ~ Time, random=~Time|ID, data=dat, correlation=corCAR1(form=~Time|ID), method="ML",na.action=na.exclude, control=list(opt="optim"))

predictions <- data.frame(coef(fit1))
names(predictions) <- c("Intercept", "Slope")
cor.test(predictions$Intercept, predictions$Slope, method = "pearson")
#correlation between intercept and slope = 0.6314682 

plot(predictions$Intercept, predictions$Slope, main="Scatterplot Example", 
     xlab="Intercept ", ylab="Slope ", pch=19)
4

1 回答 1

0

事实证明,这更像是一个统计/数学问题,而不是关于编码的问题。无论如何,我认为您变化相关性的原因在于您定义/模拟数据的方式。

使用意大利面条图查看(两个版本)您的模拟数据:

library(ggplot2)

ggplot(dat, aes(y = Stress, x = Time, colour=as.factor(ID) )) +
  geom_smooth(method=lm, se=FALSE) + theme(legend.position = "none") +
  geom_vline(xintercept=0)

您将看到每个 ID 的回归线在图的中间(在 附近Time == 2.5)比在每一端更靠近。这是因为b1*Time的值越大,越大abs(Time)

现在,当您将编码方式Time从 0 - 5 更改为 -1 - 4 时,将 y 轴向右移动,使线条更靠近。因为截距定义为Stress回归线与 y 轴相交处的值,所以移动 y 轴会使截距更靠近。或者,换句话说,移动 y 轴会改变斜率对截距的影响。

这就是为什么当您有调节器和/或随机斜率时,通常建议将预测变量居中。它使截距的解释更容易。

于 2021-08-06T12:26:42.190 回答