0

在 SAS 中,我正在执行 8 个不同治疗组的重复测量方差分析,这些治疗组测量(连续)9 个不同时间。日志仅显示没有错误代码“注意:Huynh-Feldt epsilon 和相应的调整 p 值已增强,包括基于 Lecoutre (1991) 的更正。使用 REPEATED 语句上的 UEPSDEF=HF 选项恢复为以前的定义。” 为了比较组,我创建了估算语句并运行了下面的代码。但是,结果是我每天而不是总体上对组的比较。有谁知道如何修复我的代码,让我对治疗组进行总体比较,而不是按天比较?

class Treatment2;
model Day0 Day3 Day7 Day9 Day11 Day14 Day16 Day18 Day21 = treatment2;
LSMEANS treatment2; 
REPEATED Day 9;
Estimate "Vehicle vs Axit" intercept 0 treatment2 1 -1 0 0 0 0 0 0;
Estimate "Vehicle vs X4P" intercept 0 treatment2 1 0 -1 0 0 0 0 0;
Estimate "Vehicle vs EMU" intercept 0 treatment2 1 0 0 -1 0 0 0 0;
Estimate "Vehicle vs Axit+X4P" intercept 0 treatment2 1 0 0 0 -1 0 0 0;
Estimate "Vehicle vs Axit+EMU30" intercept 0 treatment2 1 0 0 0 0 -1 0 0;
Estimate "Vehicle vs Axit+EMU10" intercept 0 treatment2 1 0 0 0 0 0 -1 0;
Estimate "Vehicle vs Axit+EMU3" intercept 0 treatment2 1 0 0 0 0 0 0 -1; 
Estimate "Axit vs X4P" intercept 0 treatment2 0 1 -1 0 0 0 0 0;
Estimate "Axit vs EMU" intercept 0 treatment2 0 1 0 -1 0 0 0 0;
Estimate "Axit vs Axit+X4P" intercept 0 treatment2 0 1 0 0 -1 0 0 0;
Estimate "Axit vs Axit+EMU30" intercept 0 treatment2 0 1 0 0 0 -1 0 0;
Estimate "Axit vs Axit+EMU10" intercept 0 treatment2 0 1 0 0 0 0 -1 0;
Estimate "Axit vs Axit+EMU3" intercept 0 treatment2 0 1 0 0 0 0 0 -1; 
Estimate "X4P vs EMU" intercept 0 treatment2 0 0 1 -1 0 0 0 0;
Estimate "X4P vs Axit+X4P" intercept 0 treatment2 0 0 1 0 -1 0 0 0;
Estimate "X4P vs Axit+EMU30" intercept 0 treatment2 0 0 1 0 0 -1 0 0;
Estimate "X4P vs Axit+EMU10" intercept 0 treatment2 0 0 1 0 0 0 -1 0;
Estimate "X4P vs Axit+EMU3" intercept 0 treatment2 0 0 1 0 0 0 0 -1; 
Estimate "EMU vs Axit+X4P" intercept 0 treatment2 0 0 0 1 -1 0 0 0;
Estimate "EMU vs Axit+EMU30" intercept 0 treatment2 0 0 0 1 0 -1 0 0;
Estimate "EMU vs Axit+EMU10" intercept 0 treatment2 0 0 0 1 0 0 -1 0;
Estimate "EMU vs Axit+EMU3" intercept 0 treatment2 0 0 0 1 0 0 0 -1; 
Estimate "Axit+X4P vs Axit+EMU30" intercept 0 treatment2 0 0 0 0 1 -1 0 0;
Estimate "Axit+X4P vs Axit+EMU10" intercept 0 treatment2 0 0 0 0 1 0 -1 0;
Estimate "Axit+X4P vs Axit+EMU3" intercept 0 treatment2 0 0 0 0 1 0 0 -1;
Estimate "Axit+EMU30 vs Axit+EMU10" intercept 0 treatment2 0 0 0 0 0 1 -1 0;
Estimate "Axit+EMU30 vs Axit+EMU3" intercept 0 treatment2 0 0 0 0 0 1 0 -1;
Estimate "Axit+EMU10 vs Axit+EMU3" intercept 0 treatment2 0 0 0 0 0 0 1 -1;
RUN;

这是一些文本数据

Treatment2  Day0    Day3    Day7    Day9    Day11   Day14   Day16   Day18   Day21
Vehicle 373.21  447.76  470.36  597.19  622.38  660.99  680.88  701.37  709.52
Vehicle 334.65  392.35  425.05  444.53  468.17  501.61  535.23  561.32  586.45
Vehicle 325.69  434.49  486.13  561.87  589.39  617.16  635.58  650.48  672.06
Vehicle 314.07  385.13  409.83  450.49  498.05  535.73  550.16  572.32  593.45
Vehicle 301.95  381.18  407.52  429.94  447.45  475.07  545.13  563.60  579.82
Vehicle 293.52  361.75  427.56  466.02  502.88  525.19  534.77  557.55  569.17
Vehicle 288.34  339.51  386.47  410.21  427.82  444.94  479.95  534.53  553.51
Vehicle 281.00  354.86  389.02  404.25  426.33  460.13  488.96  509.84  523.44
Vehicle 271.92  323.31  394.31  446.21  471.42  505.43  522.66  560.71  584.15
Vehicle 247.63  334.06  374.42  394.74  416.95  435.56  449.11  469.67  502.22
Axitinib    372.35  394.79  457.40  503.90  560.70  584.37  604.30  613.87  611.12
Axitinib    346.61  352.21  399.38  455.42  487.07  514.18  531.80  546.29  495.18
Axitinib    325.22  362.48  421.57  447.87  484.28  494.19  514.91  529.56  545.21
Axitinib    312.67  318.87  349.45  347.28  368.59  351.34  328.07  330.02  340.99
Axitinib    301.26  331.81  353.97  396.04  421.54  423.66  377.51  383.95  339.40
Axitinib    293.22  310.12  328.21  352.37  366.01  416.33  466.34  459.06  498.26
Axitinib    288.02  321.07  312.59  333.53  367.24  397.60  418.85  451.04  462.60
Axitinib    280.62  306.58  327.41  329.91  359.26  369.37  397.47  411.51  419.83
Axitinib    269.21  289.68  289.69  293.77  312.33  332.60  330.56  340.05  316.14
Axitinib    261.17  293.37  316.66  330.84  353.15  370.67  394.63  401.68  412.25
X4P-001 361.16  388.43  417.35  423.77  427.66  394.21  377.00  376.32  390.30
X4P-001 344.86  390.41  424.37  427.28  424.27  413.60  374.13  365.04  366.12
X4P-001 333.89  386.90  412.20  422.83  428.05  410.38  366.45  327.15  313.29
X4P-001 312.44  340.65  365.53  365.56  329.45  301.22  258.29  254.25  237.72
X4P-001 299.49  342.79  340.70  341.01  331.49  292.58  243.38  230.48  214.18
X4P-001 292.75  333.85  354.13  355.74  323.65  272.98  182.93  171.76  155.85
X4P-001 285.62  314.95  350.49  356.16  342.83  310.56  282.52  268.74  244.62
X4P-001 280.07  310.08  369.17  386.90  382.47  321.35  293.53  272.28  293.15
X4P-001 268.18  280.82  284.08  277.09  256.50  231.94  213.96  194.19  168.69
X4P-001 260.42  259.00  283.04  269.19  250.15  239.06  184.84  174.79  159.91
EMU-116 357.55  385.40  412.77  413.42  402.65  391.73  384.69  347.43  351.78
EMU-116 342.97  387.83  401.87  429.14  434.01  433.11  402.85  373.37  379.85
EMU-116 333.19  335.16  368.13  360.60  358.52  307.19  278.11  240.87  241.94
EMU-116 324.29  366.84  394.14  391.03  376.36  367.10  353.80  340.94  335.84
EMU-116 299.09  336.93  365.86  374.62  365.07  321.82  298.34  292.71  311.85
EMU-116 292.58  322.19  343.59  341.74  333.74  327.12  303.06  298.77  296.64
EMU-116 285.07  318.62  294.64  287.21  272.97  266.17  274.87  285.30  292.95
EMU-116 278.57  311.09  242.52  224.47  201.47  163.17  140.89  127.43  119.68
EMU-116 267.38  283.47  303.50  308.15  309.08  271.16  227.43  184.96  181.43
EMU-116 260.17  249.17  269.25  256.51  249.21  220.81  197.33  187.98  178.38
Axitinib+X4P-001    353.53  369.35  410.53  412.34  436.85  452.25  438.86  453.10  396.18
Axitinib+X4P-001    341.29  313.73  354.51  344.83  348.97  320.62  328.67  321.49  308.48
Axitinib+X4P-001    332.97  333.99  363.80  365.39  367.08  378.15  341.22  376.28  407.15
Axitinib+X4P-001    322.87  320.00  355.81  334.56  316.77  306.68  288.80  267.51  243.59
Axitinib+X4P-001    311.57  366.84  438.02  419.72  432.72  458.63  469.85  488.41  478.12
Axitinib+X4P-001    292.45  283.93  310.38  316.24  305.01  293.05  259.21  267.79  321.79
Axitinib+X4P-001    284.99  268.87  262.26  243.26  228.36  189.66  179.34  151.56  136.16
Axitinib+X4P-001    276.49  268.14  288.18  274.23  285.68  280.96  301.35  319.24  279.93
Axitinib+X4P-001    266.92  255.73  299.85  296.95  281.90  287.72  291.23  279.59  261.19
Axitinib+X4P-001    259.06  245.11  263.67  269.42  266.59  225.00  227.68  250.29  267.86

重复测量结果 估计报表如何显示 更多估计报表结果

4

1 回答 1

1

在 R 中确实很容易做到:

> SOmod = lm(cbind(Day0, Day3, Day7, Day9, Day11, Day14,
+                  Day16, Day18, Day21) ~ Treatment2, data = SOdat)

> library(emmeans)

> (SOemm = emmeans(SOmod, "Treatment2"))
 Treatment2       emmean   SE df lower.CL upper.CL
 Axitinib            392 19.9 45      352      432
 Axitinib+X4P-001    317 19.9 45      277      357
 EMU-116             308 19.9 45      268      348
 Vehicle             473 19.9 45      433      513
 X4P-001             314 19.9 45      274      354

Results are averaged over the levels of: rep.meas 
Confidence level used: 0.95 

> pairs(SOemm)
 contrast                       estimate   SE df t.ratio p.value
 Axitinib - (Axitinib+X4P-001)     74.77 28.2 45  2.653  0.0777 
 Axitinib - (EMU-116)              84.01 28.2 45  2.981  0.0355 
 Axitinib - Vehicle               -80.97 28.2 45 -2.873  0.0464 
 Axitinib - (X4P-001)              78.13 28.2 45  2.772  0.0590 
 (Axitinib+X4P-001) - (EMU-116)     9.24 28.2 45  0.328  0.9974 
 (Axitinib+X4P-001) - Vehicle    -155.74 28.2 45 -5.525  <.0001 
 (Axitinib+X4P-001) - (X4P-001)     3.36 28.2 45  0.119  1.0000 
 (EMU-116) - Vehicle             -164.98 28.2 45 -5.853  <.0001 
 (EMU-116) - (X4P-001)             -5.88 28.2 45 -0.209  0.9996 
 Vehicle - (X4P-001)              159.10 28.2 45  5.645  <.0001 

Results are averaged over the levels of: rep.meas 
P value adjustment: tukey method for comparing a family of 5 estimates 
于 2021-06-12T21:01:41.577 回答