我想通过 Fashion_Mnist 数据,我想查看输出梯度,它可能是第一层和第二层之间的均方和
我的代码首先在下面
#import the nescessary libs
import numpy as np
import torch
import time
# Loading the Fashion-MNIST dataset
from torchvision import datasets, transforms
# Get GPU Device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.cuda.get_device_name(0)
# Define a transform to normalize the data
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# Download and load the training data
trainset = datasets.FashionMNIST('MNIST_data/', download = True, train = True, transform = transform)
testset = datasets.FashionMNIST('MNIST_data/', download = True, train = False, transform = transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size = 128, shuffle = True, num_workers=4)
testloader = torch.utils.data.DataLoader(testset, batch_size = 128, shuffle = True, num_workers=4)
# Examine a sample
dataiter = iter(trainloader)
images, labels = dataiter.next()
# Define the network architecture
from torch import nn, optim
import torch.nn.functional as F
model = nn.Sequential(nn.Linear(784, 128),
nn.ReLU(),
nn.Linear(128, 10),
nn.LogSoftmax(dim = 1)
)
model.to(device)
# Define the loss
criterion = nn.MSELoss()
# Define the optimizer
optimizer = optim.Adam(model.parameters(), lr = 0.001)
# Define the epochs
epochs = 5
train_losses, test_losses = [], []
squared_sum = []
# start = time.time()
for e in range(epochs):
running_loss = 0
for images, labels in trainloader:
# Flatten Fashion-MNIST images into a 784 long vector
images = images.to(device)
labels = labels.to(device)
images = images.view(images.shape[0], -1)
optimizer.zero_grad()
output = model[0].forward(images)
loss = criterion(output[0], labels.float())
loss.backward()
optimizer.step()
running_loss += loss.item()
else:
print(running_loss)
test_loss = 0
accuracy = 0
# Turn off gradients for validation, saves memory and computation
with torch.no_grad():
# Set the model to evaluation mode
model.eval()
# Validation pass
for images, labels in testloader:
images = images.to(device)
labels = labels.to(device)
images = images.view(images.shape[0], -1)
ps = model(images[0])
test_loss += criterion(ps, labels)
top_p, top_class = ps.topk(1, dim = 1)
equals = top_class == labels.view(*top_class.shape)
accuracy += torch.mean(equals.type(torch.FloatTensor))
model.train()
print("Epoch: {}/{}..".format(e+1, epochs),
"Training loss: {:.3f}..".format(running_loss/len(trainloader)),
"Test loss: {:.3f}..".format(test_loss/len(testloader)),
"Test Accuracy: {:.3f}".format(accuracy/len(testloader)))
我想要得到的,
for e in range(epochs):
running_loss = 0
for images, labels in trainloader:
# Flatten Fashion-MNIST images into a 784 long vector
images = images.to(device)
labels = labels.to(device)
images = images.view(images.shape[0], -1)
optimizer.zero_grad()
output = model[0].forward(images)
loss = criterion(output[0], labels.float())
loss.backward()
optimizer.step()
running_loss += loss.item()
在这里,model[0](这可能是第一层 nn.Linear(784, 128)),我很想得到第一层和第二层的均方误差,
如果我运行此代码,我会在下面收到此错误
RuntimeError: The size of tensor a (128) must match the size of tensor b (96) at non-singleton dimension 0
如果我想正确运行此代码以获取 MSELoss,我需要做什么?