14

为了弄清楚我在问什么,我创建了一个简单的例子。第一步是创建一些数据:

gender <- factor(rep(c(1, 2), c(43, 41)), levels = c(1, 2),labels = c("male", "female"))
numberofdrugs <- rpois(84, 50) + 1
geneticvalue <- rpois(84,75)
death <- rpois(42,50) + 15
y <- data.frame(death, numberofdrugs, geneticvalue, gender)

所以这些是一些随机日期合并到一个data.frame。因此,从这些日期开始,我想绘制一个云,我可以在其中区分男性和女性,并在其中添加两个简单的回归(一个用于女性,一个用于男性)。所以我已经开始了,但我无法达到我想要的程度。请看下面我到目前为止所做的事情:

require(lattice)
cloud(y$death~y$numberofdrugs*geneticvalue)

基本形式的云图

xmale <- subset(y, gender=="male")
xfemale <- subset(y, gender=="female")

death.lm.male <- lm(death~numberofdrugs+geneticvalue, data=xmale)
death.lm.female <- lm(death~numberofdrugs+geneticvalue, data=xfemale)

使用云命令时如何为男性或女性制作不同的点(例如蓝色和粉红色点,而不仅仅是蓝色十字)以及如何将两个估计模型添加到云图中?

任何想法表示赞赏!谢谢你的想法!

4

2 回答 2

18

回答您问题的前半部分,“当使用云命令时,我怎样才能为男性或女性做出不同的点(例如,蓝色和粉色点仅插入蓝色十字)?”

 cloud( death ~ numberofdrugs*geneticvalue , groups=gender, data=y )

分组云图

对此的元答案可能涉及一些非 3d 可视化。也许您可以使用 lattice 或 ggplot2 将数据拆分成小的倍数?添加回归结果可能会更容易理解并且可能更容易。

splom( ~ data.frame( death, numberofdrugs, geneticvalue ), groups=gender, data=y )

爆破

默认的 splom 面板函数是 panel.pairs,您可以修改它以添加回归线,而不会遇到很多麻烦。

ggplot2 很容易在绘图矩阵中进行回归,但我无法让颜色起作用。

pm <- plotmatrix( y[ , 1:3], mapping = aes(color=death) )
pm + geom_smooth(method="lm")

情节矩阵

最后,如果你真的想用回归平面做一个云图,这里有一种使用 scatterplot3d 包的方法。请注意,我将数据更改为具有更有趣的结构以查看:

numberofdrugs <- rpois( 84, 50 ) + 1
geneticvalue <- numberofdrugs + rpois( 84, 75 )
death <- geneticvalue + rpois( 42, 50 ) + 15
y <- data.frame( death, numberofdrugs, geneticvalue, gender )

library(scatterplot3d) 
pts <- as.numeric( as.factor(y$gender) ) + 4
s <-scatterplot3d( y$death, y$numberofdrugs, y$geneticvalue, pch=pts, type="p", highlight.3d=TRUE )
fit <- lm( y$death ~ y$numberofdrugs + y$geneticvalue )
s$plane3d(fit)

带有回归平面的 scatterplot3d

于 2011-07-21T11:33:34.850 回答
17

使用rgl 包(openGL 实现)汽车包中有很好的可视化效果:

require(car)
require(rgl)
scatter3d(death~numberofdrugs+geneticvalue, groups=y$gender, data=y, parallel=FALSE)

3d 适合汽车包装

于 2011-07-25T09:38:02.393 回答