我正在尝试规范化 tf.data.Dataset,如下所示:
def normalization(image):
print(image['label'])
return 1
z = val.map(normalization)
val 数据集是这样的:
<TakeDataset shapes: { id: (), image: (32, 32, 3), label: ()}, types: {id: tf.string, image: tf.uint8, label: tf.int64}>
如果我打印一个元素,我可以看到:
{ 'id': <tf.Tensor: shape=(), dtype=string, numpy=b'train_31598'>, 'image': <tf.Tensor: shape=(32, 32, 3), dtype=uint8,
numpy= array([[[151, 130, 106],
.....,
[104, 95, 77]]], dtype=uint8)>, 'label': <tf.Tensor: shape=(), dtype=int64, numpy=50>}
但是在我的函数输出中打印它:
'id': <tf.Tensor 'args_1:0' shape=() dtype=string>, 'image': <tf.Tensor 'args_2:0' shape=(32, 32, 3) dtype=uint8>, 'label': <tf.Tensor 'args_3:0' shape=() dtype=int64>}
所以我不能对我的图像数组执行任何转换,因为我没有张量数组'args_2:0'
如何正确地将每个元素传递给我的规范化函数?