0

我计算了一个 4Hz 的正弦波,应用 FFT 并计算了幅度,幅度是一个长度为 500 的数组,我想将该数组中的每个元素转换为 dBm 形式,并绘制一个频谱图。但是我似乎无法正确计算。

我看到了那个通用公式:

valueDBFS = 20 np.log10(abs(value))

所以我尝试使用它,但我只得到负面结果..

这是我的完整代码(已编辑):

# Python example - Fourier transform using numpy.fft method
import numpy as np
import matplotlib.pyplot as plotter
from os import times
from PIL import Image
import numpy as np

# How many time points are needed i,e., Sampling Frequency
samplingFrequency = 100
# At what intervals time points are sampled
samplingInterval = 1 / samplingFrequency
# Begin time perod of the signals
beginTime = 0
# End time period of the signals
endTime = 10
# Frequency of the signals
signal1Frequency = 4
signal2Frequency = 70

# Time points
time = np.arange(beginTime, endTime, samplingInterval)
# Create two sine waves
amplitude1 = 100 * np.sin(2*np.pi*signal1Frequency*time)

fourierTransform = np.fft.fft(amplitude1)
fourierTransform = fourierTransform[range(int(len(amplitude1)/2))] # Exclude sampling frequency
tpCount = len(amplitude1)
values = np.arange(int(tpCount/2))
timePeriod = tpCount/samplingFrequency
frequencies = values/timePeriod


valueDBFS = 20*np.log10(abs(fourierTransform))

print(valueDBFS)

#SPECTROGRAM
w, h = 500, 500
data = np.zeros((h, w, 3), dtype=np.uint8)
time = time[:len(time)//2]
for i in range(500):
    for j in range(500):
        color = abs(fourierTransform)[i]
        data[i,j] = [color, color, color] 
        
img = Image.fromarray(data, 'RGB')
img.show()
4

1 回答 1

0

幅度的最大值为 1,log10(1) 为 0,其他所有值都将小于该值 - 例如 log10(0.9) = -0,0458。

所以你的那部分代码工作正常,你的例子中的日志应该是负面的!- 尝试像这样定义你的振幅:

amplitude1 = 100 * np.sin(2*np.pi*signal1Frequency*time)

这应该会产生很多积极的结果。

于 2021-05-23T17:24:25.743 回答