该存储库jupyter/docker-stacks
为 Jupyter Notebook 映像提供了多个 Dockerfile。这些 Dockerfile 以下列形式相互构建:
这个 Dockerfile 是jupyter/base-notebook
# Copyright (c) Jupyter Development Team.
# Distributed under the terms of the Modified BSD License.
# Ubuntu 20.04 (focal)
# https://hub.docker.com/_/ubuntu/?tab=tags&name=focal
# OS/ARCH: linux/amd64
ARG ROOT_CONTAINER=ubuntu:focal-20210416@sha256:86ac87f73641c920fb42cc9612d4fb57b5626b56ea2a19b894d0673fd5b4f2e9
ARG BASE_CONTAINER=$ROOT_CONTAINER
FROM $BASE_CONTAINER
LABEL maintainer="Jupyter Project <jupyter@googlegroups.com>"
ARG NB_USER="jovyan"
ARG NB_UID="1000"
ARG NB_GID="100"
# Fix DL4006
SHELL ["/bin/bash", "-o", "pipefail", "-c"]
USER root
# ---- Miniforge installer ----
# Default values can be overridden at build time
# (ARGS are in lower case to distinguish them from ENV)
# Check https://github.com/conda-forge/miniforge/releases
# Conda version
ARG conda_version="4.10.1"
# Miniforge installer patch version
ARG miniforge_patch_number="0"
# Miniforge installer architecture
ARG miniforge_arch="x86_64"
# Package Manager and Python implementation to use (https://github.com/conda-forge/miniforge)
# - conda only: either Miniforge3 to use Python or Miniforge-pypy3 to use PyPy
# - conda + mamba: either Mambaforge to use Python or Mambaforge-pypy3 to use PyPy
ARG miniforge_python="Mambaforge"
# Miniforge archive to install
ARG miniforge_version="${conda_version}-${miniforge_patch_number}"
# Miniforge installer
ARG miniforge_installer="${miniforge_python}-${miniforge_version}-Linux-${miniforge_arch}.sh"
# Miniforge checksum
ARG miniforge_checksum="d4065b376f81b83cfef0c7316f97bb83337e4ae27eb988828363a578226e3a62"
# Install all OS dependencies for notebook server that starts but lacks all
# features (e.g., download as all possible file formats)
ENV DEBIAN_FRONTEND noninteractive
RUN apt-get -q update && \
apt-get install -yq --no-install-recommends \
tini \
wget \
ca-certificates \
sudo \
locales \
fonts-liberation \
run-one && \
apt-get clean && rm -rf /var/lib/apt/lists/* && \
echo "en_US.UTF-8 UTF-8" > /etc/locale.gen && \
locale-gen
# Configure environment
ENV CONDA_DIR=/opt/conda \
SHELL=/bin/bash \
NB_USER=$NB_USER \
NB_UID=$NB_UID \
NB_GID=$NB_GID \
LC_ALL=en_US.UTF-8 \
LANG=en_US.UTF-8 \
LANGUAGE=en_US.UTF-8
ENV PATH=$CONDA_DIR/bin:$PATH \
HOME=/home/$NB_USER \
CONDA_VERSION="${conda_version}" \
MINIFORGE_VERSION="${miniforge_version}"
# Copy a script that we will use to correct permissions after running certain commands
COPY fix-permissions /usr/local/bin/fix-permissions
RUN chmod a+rx /usr/local/bin/fix-permissions
# Enable prompt color in the skeleton .bashrc before creating the default NB_USER
# hadolint ignore=SC2016
RUN sed -i 's/^#force_color_prompt=yes/force_color_prompt=yes/' /etc/skel/.bashrc && \
# Add call to conda init script see https://stackoverflow.com/a/58081608/4413446
echo 'eval "$(command conda shell.bash hook 2> /dev/null)"' >> /etc/skel/.bashrc
# Create NB_USER with name jovyan user with UID=1000 and in the 'users' group
# and make sure these dirs are writable by the `users` group.
RUN echo "auth requisite pam_deny.so" >> /etc/pam.d/su && \
sed -i.bak -e 's/^%admin/#%admin/' /etc/sudoers && \
sed -i.bak -e 's/^%sudo/#%sudo/' /etc/sudoers && \
useradd -l -m -s /bin/bash -N -u $NB_UID $NB_USER && \
mkdir -p $CONDA_DIR && \
chown $NB_USER:$NB_GID $CONDA_DIR && \
chmod g+w /etc/passwd && \
fix-permissions $HOME && \
fix-permissions $CONDA_DIR
USER $NB_UID
ARG PYTHON_VERSION=default
# Setup work directory for backward-compatibility
RUN mkdir "/home/$NB_USER/work" && \
fix-permissions "/home/$NB_USER"
# Install conda as jovyan and check the sha256 sum provided on the download site
WORKDIR /tmp
# Prerequisites installation: conda, mamba, pip, tini
RUN wget --quiet "https://github.com/conda-forge/miniforge/releases/download/${miniforge_version}/${miniforge_installer}" && \
echo "${miniforge_checksum} *${miniforge_installer}" | sha256sum --check && \
/bin/bash "${miniforge_installer}" -f -b -p $CONDA_DIR && \
rm "${miniforge_installer}" && \
# Conda configuration see https://conda.io/projects/conda/en/latest/configuration.html
echo "conda ${CONDA_VERSION}" >> $CONDA_DIR/conda-meta/pinned && \
conda config --system --set auto_update_conda false && \
conda config --system --set show_channel_urls true && \
if [ ! $PYTHON_VERSION = 'default' ]; then conda install --yes python=$PYTHON_VERSION; fi && \
conda list python | grep '^python ' | tr -s ' ' | cut -d '.' -f 1,2 | sed 's/$/.*/' >> $CONDA_DIR/conda-meta/pinned && \
conda install --quiet --yes \
"conda=${CONDA_VERSION}" \
'pip' && \
conda update --all --quiet --yes && \
conda clean --all -f -y && \
rm -rf /home/$NB_USER/.cache/yarn && \
fix-permissions $CONDA_DIR && \
fix-permissions /home/$NB_USER
# Install Jupyter Notebook, Lab, and Hub
# Generate a notebook server config
# Cleanup temporary files
# Correct permissions
# Do all this in a single RUN command to avoid duplicating all of the
# files across image layers when the permissions change
RUN conda install --quiet --yes \
'notebook=6.3.0' \
'jupyterhub=1.4.1' \
'jupyterlab=3.0.15' && \
conda clean --all -f -y && \
npm cache clean --force && \
jupyter notebook --generate-config && \
jupyter lab clean && \
rm -rf /home/$NB_USER/.cache/yarn && \
fix-permissions $CONDA_DIR && \
fix-permissions /home/$NB_USER
EXPOSE 8888
# Configure container startup
ENTRYPOINT ["tini", "-g", "--"]
CMD ["start-notebook.sh"]
# Copy local files as late as possible to avoid cache busting
COPY start.sh start-notebook.sh start-singleuser.sh /usr/local/bin/
# Currently need to have both jupyter_notebook_config and jupyter_server_config to support classic and lab
COPY jupyter_notebook_config.py /etc/jupyter/
# Fix permissions on /etc/jupyter as root
USER root
# Prepare upgrade to JupyterLab V3.0 #1205
RUN sed -re "s/c.NotebookApp/c.ServerApp/g" \
/etc/jupyter/jupyter_notebook_config.py > /etc/jupyter/jupyter_server_config.py && \
fix-permissions /etc/jupyter/
# Switch back to jovyan to avoid accidental container runs as root
USER $NB_UID
WORKDIR $HOME
这个 Dockerfile 是jupyter/minimal-notebook
# Copyright (c) Jupyter Development Team.
# Distributed under the terms of the Modified BSD License.
ARG BASE_CONTAINER=jupyter/base-notebook
FROM $BASE_CONTAINER
LABEL maintainer="Jupyter Project <jupyter@googlegroups.com>"
USER root
# Install all OS dependencies for fully functional notebook server
RUN apt-get update && apt-get install -yq --no-install-recommends \
build-essential \
vim-tiny \
git \
inkscape \
libsm6 \
libxext-dev \
libxrender1 \
lmodern \
netcat \
# ---- nbconvert dependencies ----
texlive-xetex \
texlive-fonts-recommended \
texlive-plain-generic \
# ----
tzdata \
unzip \
nano-tiny \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Create alternative for nano -> nano-tiny
RUN update-alternatives --install /usr/bin/nano nano /bin/nano-tiny 10
# Switch back to jovyan to avoid accidental container runs as root
USER $NB_UID
这个 Dockerfile 是jupyter/scipy-notebook
# Copyright (c) Jupyter Development Team.
# Distributed under the terms of the Modified BSD License.
ARG BASE_CONTAINER=jupyter/minimal-notebook
FROM $BASE_CONTAINER
LABEL maintainer="Jupyter Project <jupyter@googlegroups.com>"
USER root
# ffmpeg for matplotlib anim & dvipng+cm-super for latex labels
RUN apt-get update && \
apt-get install -y --no-install-recommends ffmpeg dvipng cm-super && \
apt-get clean && rm -rf /var/lib/apt/lists/*
USER $NB_UID
# Install Python 3 packages
RUN conda install --quiet --yes \
'beautifulsoup4=4.9.*' \
'conda-forge::blas=*=openblas' \
'bokeh=2.3.*' \
'bottleneck=1.3.*' \
'cloudpickle=1.6.*' \
'cython=0.29.*' \
'dask=2021.4.*' \
'dill=0.3.*' \
'h5py=3.2.*' \
'ipywidgets=7.6.*' \
'ipympl=0.7.*'\
'matplotlib-base=3.4.*' \
'numba=0.53.*' \
'numexpr=2.7.*' \
'pandas=1.2.*' \
'patsy=0.5.*' \
'protobuf=3.15.*' \
'pytables=3.6.*' \
'scikit-image=0.18.*' \
'scikit-learn=0.24.*' \
'scipy=1.6.*' \
'seaborn=0.11.*' \
'sqlalchemy=1.4.*' \
'statsmodels=0.12.*' \
'sympy=1.8.*' \
'vincent=0.4.*' \
'widgetsnbextension=3.5.*'\
'xlrd=2.0.*' && \
conda clean --all -f -y && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
# Install facets which does not have a pip or conda package at the moment
WORKDIR /tmp
RUN git clone https://github.com/PAIR-code/facets.git && \
jupyter nbextension install facets/facets-dist/ --sys-prefix && \
rm -rf /tmp/facets && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
# Import matplotlib the first time to build the font cache.
ENV XDG_CACHE_HOME="/home/${NB_USER}/.cache/"
RUN MPLBACKEND=Agg python -c "import matplotlib.pyplot" && \
fix-permissions "/home/${NB_USER}"
USER $NB_UID
WORKDIR $HOME
最后,这个 Dockerfile 是jupyter/tensorflow-notebook
# Copyright (c) Jupyter Development Team.
# Distributed under the terms of the Modified BSD License.
ARG BASE_CONTAINER=jupyter/scipy-notebook
FROM $BASE_CONTAINER
LABEL maintainer="Jupyter Project <jupyter@googlegroups.com>"
# Install Tensorflow
RUN mamba install --quiet --yes \
'tensorflow=2.4.1' && \
conda clean --all -f -y && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
我使用以下命令在本地(使用 BuildKit)构建了每个图像:
docker build --rm --force-rm -t <TAG HERE> <FOLDER NAME HERE>
在这里,最终图像大小jupyter/tensorflow-notebook
为 3.17 GB。
然后,我将所有以前的 Dockerfile 合并到以下多阶段构建 Dockerfile 中:
# Copyright (c) Jupyter Development Team.
# Distributed under the terms of the Modified BSD License.
# Ubuntu 20.04 (focal)
# https://hub.docker.com/_/ubuntu/?tab=tags&name=focal
# OS/ARCH: linux/amd64
ARG ROOT_CONTAINER=ubuntu:focal-20210416@sha256:86ac87f73641c920fb42cc9612d4fb57b5626b56ea2a19b894d0673fd5b4f2e9
ARG BASE_CONTAINER=$ROOT_CONTAINER
FROM $BASE_CONTAINER AS base
LABEL maintainer="Jupyter Project <jupyter@googlegroups.com>"
ARG NB_USER="jovyan"
ARG NB_UID="1000"
ARG NB_GID="100"
# Fix DL4006
SHELL ["/bin/bash", "-o", "pipefail", "-c"]
USER root
# ---- Miniforge installer ----
# Default values can be overridden at build time
# (ARGS are in lower case to distinguish them from ENV)
# Check https://github.com/conda-forge/miniforge/releases
# Conda version
ARG conda_version="4.10.1"
# Miniforge installer patch version
ARG miniforge_patch_number="0"
# Miniforge installer architecture
ARG miniforge_arch="x86_64"
# Package Manager and Python implementation to use (https://github.com/conda-forge/miniforge)
# - conda only: either Miniforge3 to use Python or Miniforge-pypy3 to use PyPy
# - conda + mamba: either Mambaforge to use Python or Mambaforge-pypy3 to use PyPy
ARG miniforge_python="Mambaforge"
# Miniforge archive to install
ARG miniforge_version="${conda_version}-${miniforge_patch_number}"
# Miniforge installer
ARG miniforge_installer="${miniforge_python}-${miniforge_version}-Linux-${miniforge_arch}.sh"
# Miniforge checksum
ARG miniforge_checksum="d4065b376f81b83cfef0c7316f97bb83337e4ae27eb988828363a578226e3a62"
# Install all OS dependencies for notebook server that starts but lacks all
# features (e.g., download as all possible file formats)
ENV DEBIAN_FRONTEND noninteractive
RUN apt-get -q update && \
apt-get install -yq --no-install-recommends \
tini \
wget \
ca-certificates \
sudo \
locales \
fonts-liberation \
run-one && \
apt-get clean && rm -rf /var/lib/apt/lists/* && \
echo "en_US.UTF-8 UTF-8" > /etc/locale.gen && \
locale-gen
# Configure environment
ENV CONDA_DIR=/opt/conda \
SHELL=/bin/bash \
NB_USER=$NB_USER \
NB_UID=$NB_UID \
NB_GID=$NB_GID \
LC_ALL=en_US.UTF-8 \
LANG=en_US.UTF-8 \
LANGUAGE=en_US.UTF-8
ENV PATH=$CONDA_DIR/bin:$PATH \
HOME=/home/$NB_USER \
CONDA_VERSION="${conda_version}" \
MINIFORGE_VERSION="${miniforge_version}"
# Copy a script that we will use to correct permissions after running certain commands
COPY fix-permissions /usr/local/bin/fix-permissions
RUN chmod a+rx /usr/local/bin/fix-permissions
# Enable prompt color in the skeleton .bashrc before creating the default NB_USER
# hadolint ignore=SC2016
RUN sed -i 's/^#force_color_prompt=yes/force_color_prompt=yes/' /etc/skel/.bashrc && \
# Add call to conda init script see https://stackoverflow.com/a/58081608/4413446
echo 'eval "$(command conda shell.bash hook 2> /dev/null)"' >> /etc/skel/.bashrc
# Create NB_USER with name jovyan user with UID=1000 and in the 'users' group
# and make sure these dirs are writable by the `users` group.
RUN echo "auth requisite pam_deny.so" >> /etc/pam.d/su && \
sed -i.bak -e 's/^%admin/#%admin/' /etc/sudoers && \
sed -i.bak -e 's/^%sudo/#%sudo/' /etc/sudoers && \
useradd -l -m -s /bin/bash -N -u $NB_UID $NB_USER && \
mkdir -p $CONDA_DIR && \
chown $NB_USER:$NB_GID $CONDA_DIR && \
chmod g+w /etc/passwd && \
fix-permissions $HOME && \
fix-permissions $CONDA_DIR
USER $NB_UID
ARG PYTHON_VERSION=default
# Setup work directory for backward-compatibility
RUN mkdir "/home/$NB_USER/work" && \
fix-permissions "/home/$NB_USER"
# Install conda as jovyan and check the sha256 sum provided on the download site
WORKDIR /tmp
# Prerequisites installation: conda, mamba, pip, tini
RUN wget --quiet "https://github.com/conda-forge/miniforge/releases/download/${miniforge_version}/${miniforge_installer}" && \
echo "${miniforge_checksum} *${miniforge_installer}" | sha256sum --check && \
/bin/bash "${miniforge_installer}" -f -b -p $CONDA_DIR && \
rm "${miniforge_installer}" && \
# Conda configuration see https://conda.io/projects/conda/en/latest/configuration.html
echo "conda ${CONDA_VERSION}" >> $CONDA_DIR/conda-meta/pinned && \
conda config --system --set auto_update_conda false && \
conda config --system --set show_channel_urls true && \
if [ ! $PYTHON_VERSION = 'default' ]; then conda install --yes python=$PYTHON_VERSION; fi && \
conda list python | grep '^python ' | tr -s ' ' | cut -d '.' -f 1,2 | sed 's/$/.*/' >> $CONDA_DIR/conda-meta/pinned && \
conda install --quiet --yes \
"conda=${CONDA_VERSION}" \
'pip' && \
conda update --all --quiet --yes && \
conda clean --all -f -y && \
rm -rf /home/$NB_USER/.cache/yarn && \
fix-permissions $CONDA_DIR && \
fix-permissions /home/$NB_USER
# Install Jupyter Notebook, Lab, and Hub
# Generate a notebook server config
# Cleanup temporary files
# Correct permissions
# Do all this in a single RUN command to avoid duplicating all of the
# files across image layers when the permissions change
RUN conda install --quiet --yes \
'notebook=6.3.0' \
'jupyterhub=1.4.1' \
'jupyterlab=3.0.15' && \
conda clean --all -f -y && \
npm cache clean --force && \
jupyter notebook --generate-config && \
jupyter lab clean && \
rm -rf /home/$NB_USER/.cache/yarn && \
fix-permissions $CONDA_DIR && \
fix-permissions /home/$NB_USER
EXPOSE 8888
# Configure container startup
ENTRYPOINT ["tini", "-g", "--"]
CMD ["start-notebook.sh"]
# Copy local files as late as possible to avoid cache busting
COPY start.sh start-notebook.sh start-singleuser.sh /usr/local/bin/
# Currently need to have both jupyter_notebook_config and jupyter_server_config to support classic and lab
COPY jupyter_notebook_config.py /etc/jupyter/
# Fix permissions on /etc/jupyter as root
USER root
# Prepare upgrade to JupyterLab V3.0 #1205
RUN sed -re "s/c.NotebookApp/c.ServerApp/g" \
/etc/jupyter/jupyter_notebook_config.py > /etc/jupyter/jupyter_server_config.py && \
fix-permissions /etc/jupyter/
# Switch back to jovyan to avoid accidental container runs as root
USER $NB_UID
WORKDIR $HOME
# Copyright (c) Jupyter Development Team.
# Distributed under the terms of the Modified BSD License.
ARG BASE_CONTAINER=jupyter/base-notebook
FROM base AS minimal
LABEL maintainer="Jupyter Project <jupyter@googlegroups.com>"
USER root
# Install all OS dependencies for fully functional notebook server
RUN apt-get update && apt-get install -yq --no-install-recommends \
build-essential \
vim-tiny \
git \
inkscape \
libsm6 \
libxext-dev \
libxrender1 \
lmodern \
netcat \
# ---- nbconvert dependencies ----
texlive-xetex \
texlive-fonts-recommended \
texlive-plain-generic \
# ----
tzdata \
unzip \
nano-tiny \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Create alternative for nano -> nano-tiny
RUN update-alternatives --install /usr/bin/nano nano /bin/nano-tiny 10
# Switch back to jovyan to avoid accidental container runs as root
USER $NB_UID
# Copyright (c) Jupyter Development Team.
# Distributed under the terms of the Modified BSD License.
ARG BASE_CONTAINER=jupyter/minimal-notebook
FROM minimal AS scipy
LABEL maintainer="Jupyter Project <jupyter@googlegroups.com>"
USER root
# ffmpeg for matplotlib anim & dvipng+cm-super for latex labels
RUN apt-get update && \
apt-get install -y --no-install-recommends ffmpeg dvipng cm-super && \
apt-get clean && rm -rf /var/lib/apt/lists/*
USER $NB_UID
# Install Python 3 packages
RUN conda install --quiet --yes \
'beautifulsoup4=4.9.*' \
'conda-forge::blas=*=openblas' \
'bokeh=2.3.*' \
'bottleneck=1.3.*' \
'cloudpickle=1.6.*' \
'cython=0.29.*' \
'dask=2021.4.*' \
'dill=0.3.*' \
'h5py=3.2.*' \
'ipywidgets=7.6.*' \
'ipympl=0.7.*'\
'matplotlib-base=3.4.*' \
'numba=0.53.*' \
'numexpr=2.7.*' \
'pandas=1.2.*' \
'patsy=0.5.*' \
'protobuf=3.15.*' \
'pytables=3.6.*' \
'scikit-image=0.18.*' \
'scikit-learn=0.24.*' \
'scipy=1.6.*' \
'seaborn=0.11.*' \
'sqlalchemy=1.4.*' \
'statsmodels=0.12.*' \
'sympy=1.8.*' \
'vincent=0.4.*' \
'widgetsnbextension=3.5.*'\
'xlrd=2.0.*' && \
conda clean --all -f -y && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
# Install facets which does not have a pip or conda package at the moment
WORKDIR /tmp
RUN git clone https://github.com/PAIR-code/facets.git && \
jupyter nbextension install facets/facets-dist/ --sys-prefix && \
rm -rf /tmp/facets && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
# Import matplotlib the first time to build the font cache.
ENV XDG_CACHE_HOME="/home/${NB_USER}/.cache/"
RUN MPLBACKEND=Agg python -c "import matplotlib.pyplot" && \
fix-permissions "/home/${NB_USER}"
USER $NB_UID
WORKDIR $HOME
# Copyright (c) Jupyter Development Team.
# Distributed under the terms of the Modified BSD License.
ARG BASE_CONTAINER=jupyter/scipy-notebook
FROM scipy AS tensorflow
LABEL maintainer="Jupyter Project <jupyter@googlegroups.com>"
# Install Tensorflow
RUN mamba install --quiet --yes \
'tensorflow=2.4.1' && \
conda clean --all -f -y && \
fix-permissions "${CONDA_DIR}" && \
fix-permissions "/home/${NB_USER}"
此映像的大小为 14.61 GB,比拆分的 Dockerfiles 构建大 11 GB。
尺寸急剧增加的原因是什么?