I would like to update state, So here is what i wrote:
def create_keras_model():
...
return model
iterative_process = tff.learning.build_federated_averaging_process(..)
My problem is loss increase contrary to the accuracy which makes a small decrease:
round 1, metrics=OrderedDict([('categorical_accuracy', 0.4675926), ('loss', 8.581259)])
round 2, metrics=OrderedDict([('categorical_accuracy', 0.65625), ('loss', 5.4126678)])
round 3, metrics=OrderedDict([('categorical_accuracy', 0.6018519), ('loss', 6.37924)])
round 4, metrics=OrderedDict([('categorical_accuracy', 0.587963), ('loss', 6.5979366)])
round 5, metrics=OrderedDict([('categorical_accuracy', 0.6400463), ('loss', 5.7463913)])
round 6, metrics=OrderedDict([('categorical_accuracy', 0.6909722), ('loss', 4.872179)])
round 7, metrics=OrderedDict([('categorical_accuracy', 0.6469907), ('loss', 5.6218925)])
round 8, metrics=OrderedDict([('categorical_accuracy', 0.7037037), ('loss', 4.723536)])
round 9, metrics=OrderedDict([('categorical_accuracy', 0.7002315), ('loss', 4.774122)])
round 10, metrics=OrderedDict([('categorical_accuracy', 0.7060185), ('loss', 4.6346316)])
round 11, metrics=OrderedDict([('categorical_accuracy', 0.6724537), ('loss', 5.213738)])
round 12, metrics=OrderedDict([('categorical_accuracy', 0.6608796), ('loss', 5.450448)])
Is there another solution to solve this problem ? Thanks