0

我正在处理这个数据集(我已经清理了它,没有缺失值)。

        Area    No. of Bedrooms Resale  latitude    longitude   price   Alaknanda   Badarpur    Bharat Vihar    Bindapur    Burari  Chattarpur  Chittaranjan Park   Delhi   Delhi Meerut Expressway Dwarka Mor  Dwarka More Govindpuri  Greater Kailash Hari Nagar  Jamia Nagar Jasola  Kalkaji Kamla Nagar Mahavir Enclave Mansa Ram Park  Mayur Vihar Mayur Vihar II  Model Town  Mundka  Munirka New Ashok Nagar Noida Road  Okhla   Om Nagar    Om Vihar    Palam   Paschim Vihar   Pitampura   Preet Vihar Punjabi Bagh    Rohini Sector 9 Rohini sector 24    Roop Nagar  Sainik Farms    Saket   Sarita Vihar    Sector 10 Dwarka    Sector 11 Dwarka    Sector 12 Dwarka    Sector 13 Dwarka    Sector 13 Rohini    Sector 17 Dwarka    Sector 18A Dwarka   Sector 19 Dwarka    Sector 2 Dwarka Sector 22 Dwarka    Sector 22 Rohini    Sector 23 Dwarka    Sector 23 Rohini    Sector 24 Rohini    Sector 3 Dwarka Sector 4 Dwarka Sector 5 Dwarka Sector 6 Dwarka Sector 7 Dwarka Sector 9 Dwarka Sector-18 Dwarka    Shahdara    Shanti Park Dwarka  Shastri Nagar   Uttam Nagar Vasant Kunj Vikas Puri  West End    West Punjabi Bagh   nawada
0   1200    2   1   28.584311   77.057693   105.0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
1   1000    3   0   28.619074   77.056686   60.0    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0
2   1350    2   1   28.528574   77.288331   150.0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
3   435 2   0   28.619074   77.056686   25.0    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0
4   900 3   0   28.619310   77.033279   58.0    0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
4993    540 2   1   28.603176   77.063060   25.0    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
4994    540 2   1   28.603176   77.063060   30.0    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
4995    415 1   1   28.544790   77.051083   26.0    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
4996    415 1   1   28.544790   77.051083   55.0    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
4997    900 3   1   28.619074   77.056686   42.0    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0
4157 rows × 77 columns





应用随机森林回归器后效果不佳,因此我决定缩放特征 - (卧室面积转售纬度经度)和目标变量 - (价格)

但是在执行缩放之后:

from sklearn.preprocessing import StandardScaler


def scaleColumns(df, cols_to_scale):

    for col in cols_to_scale:
      scaler = StandardScaler()
      df[col] = pd.DataFrame(scaler.fit_transform(df[col].values.reshape((-1,1))))
      df
    return df


scaled_df = scaleColumns(df,['Area',    'No. of Bedrooms',      'latitude', 'longitude', 'price'])

scaled_df

我明白了:

    Area    No. of Bedrooms Resale  latitude    longitude   price   Alaknanda   Badarpur    Bharat Vihar    Bindapur    Burari  Chattarpur  Chittaranjan Park   Delhi   Delhi Meerut Expressway Dwarka Mor  Dwarka More Govindpuri  Greater Kailash Hari Nagar  Jamia Nagar Jasola  Kalkaji Kamla Nagar Mahavir Enclave Mansa Ram Park  Mayur Vihar Mayur Vihar II  Model Town  Mundka  Munirka New Ashok Nagar Noida Road  Okhla   Om Nagar    Om Vihar    Palam   Paschim Vihar   Pitampura   Preet Vihar Punjabi Bagh    Rohini Sector 9 Rohini sector 24    Roop Nagar  Sainik Farms    Saket   Sarita Vihar    Sector 10 Dwarka    Sector 11 Dwarka    Sector 12 Dwarka    Sector 13 Dwarka    Sector 13 Rohini    Sector 17 Dwarka    Sector 18A Dwarka   Sector 19 Dwarka    Sector 2 Dwarka Sector 22 Dwarka    Sector 22 Rohini    Sector 23 Dwarka    Sector 23 Rohini    Sector 24 Rohini    Sector 3 Dwarka Sector 4 Dwarka Sector 5 Dwarka Sector 6 Dwarka Sector 7 Dwarka Sector 9 Dwarka Sector-18 Dwarka    Shahdara    Shanti Park Dwarka  Shastri Nagar   Uttam Nagar Vasant Kunj Vikas Puri  West End    West Punjabi Bagh   nawada
0   -0.156044   -0.846368   1   0.146719    0.197107    -0.154917   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
1   -0.361197   0.327590    0   0.154070    0.197058    -0.245661   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0
2   -0.002180   -0.846368   1   0.134931    0.208280    -0.064172   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
3   -0.940754   -0.846368   0   0.154070    0.197058    -0.316239   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0
4   -0.463774   0.327590    0   0.154120    0.195924    -0.249694   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
4993    NaN NaN 1   NaN NaN NaN 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
4994    NaN NaN 1   NaN NaN NaN 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
4995    NaN NaN 1   NaN NaN NaN 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
4996    NaN NaN 1   NaN NaN NaN 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
4997    NaN NaN 1   NaN NaN NaN 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0
4157 rows × 77 columns


许多值现在变成了 NaN。我怎样才能解决这个问题?

4

0 回答 0