例如,考虑这个图像,我想将每个部分保存为单个图像:
这是代码,这将在每个时期后给出一系列输出,我想将每个小输出保存为单个图像。我该如何进行?
import tensorflow as tf
from tensorflow.keras.layers import Input, Reshape, Dropout, Dense
from tensorflow.keras.layers import Flatten, BatchNormalization
from tensorflow.keras.layers import Activation, ZeroPadding2D
from tensorflow.keras.layers import LeakyReLU
from tensorflow.keras.layers import UpSampling2D, Conv2D
from tensorflow.keras.models import Sequential, Model, load_model
from tensorflow.keras.optimizers import Adam
import numpy as np
from PIL import Image
from tqdm import tqdm
import os
import time
import matplotlib.pyplot as plt
from google.colab import drive
drive.mount('/content/drive')
GENERATE_RES = 3
GENERATE_SQUARE = 32 * GENERATE_RES # rows/cols (should be square)
IMAGE_CHANNELS = 3
# Preview image
PREVIEW_ROWS = 4
PREVIEW_COLS = 7
PREVIEW_MARGIN = 16
# Size vector to generate images from
SEED_SIZE = 100
# Configuration
DATA_PATH = '/content/drive/MyDrive/cars/images'
EPOCHS = 50
BATCH_SIZE = 32
BUFFER_SIZE = 60000
print(f"Will generate {GENERATE_SQUARE}px square images.")
def hms_string(sec_elapsed):
h = int(sec_elapsed / (60 * 60))
m = int((sec_elapsed % (60 * 60)) / 60)
s = sec_elapsed % 60
return "{}:{:>02}:{:>05.2f}".format(h, m, s)
training_binary_path = os.path.join(DATA_PATH,
f'training_data_{GENERATE_SQUARE}_{GENERATE_SQUARE}.npy')
print(f"Looking for file: {training_binary_path}")
if not os.path.isfile(training_binary_path):
start = time.time()
print("Loading training images...")
training_data = []
faces_path = os.path.join(DATA_PATH)
for filename in tqdm(os.listdir(faces_path)):
path = os.path.join(faces_path,filename)
image = Image.open(path).resize((GENERATE_SQUARE,
GENERATE_SQUARE),Image.ANTIALIAS)
training_data.append(np.asarray(image))
training_data = np.reshape(training_data,(-1,GENERATE_SQUARE,
GENERATE_SQUARE,IMAGE_CHANNELS))
training_data = training_data.astype(np.float32)
training_data = training_data / 127.5 - 1.
print("Saving training image binary...")
np.save(training_binary_path,training_data)
elapsed = time.time()-start
print (f'Image preprocess time: {hms_string(elapsed)}')
else:
print("Loading previous training pickle...")
training_data = np.load(training_binary_path)
#shuffle the data
train_dataset = tf.data.Dataset.from_tensor_slices(training_data) \
.shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
def build_generator(seed_size, channels):
model = Sequential()
model.add(Dense(4*4*256,activation="relu",input_dim=seed_size))
model.add(Reshape((4,4,256)))
model.add(UpSampling2D())
model.add(Conv2D(256,kernel_size=3,padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
model.add(UpSampling2D())
model.add(Conv2D(256,kernel_size=3,padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
# Output resolution, additional upsampling
model.add(UpSampling2D())
model.add(Conv2D(128,kernel_size=3,padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
if GENERATE_RES>1:
model.add(UpSampling2D(size=(GENERATE_RES,GENERATE_RES)))
model.add(Conv2D(128,kernel_size=3,padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation("relu"))
# Final CNN layer
model.add(Conv2D(channels,kernel_size=3,padding="same"))
model.add(Activation("tanh"))
return model
def build_discriminator(image_shape):
model = Sequential()
model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=image_shape,
padding="same"))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))
model.add(ZeroPadding2D(padding=((0,1),(0,1))))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(512, kernel_size=3, strides=1, padding="same"))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
return model
def save_images(cnt,noise):
image_array = np.full((
PREVIEW_MARGIN + (PREVIEW_ROWS * (GENERATE_SQUARE+PREVIEW_MARGIN)),
PREVIEW_MARGIN + (PREVIEW_COLS * (GENERATE_SQUARE+PREVIEW_MARGIN)), 3),
255, dtype=np.uint8)
generated_images = generator.predict(noise)
generated_images = 0.5 * generated_images + 0.5
image_count = 0
for row in range(PREVIEW_ROWS):
for col in range(PREVIEW_COLS):
r = row * (GENERATE_SQUARE+16) + PREVIEW_MARGIN
c = col * (GENERATE_SQUARE+16) + PREVIEW_MARGIN
image_array[r:r+GENERATE_SQUARE,c:c+GENERATE_SQUARE] \
= generated_images[image_count] * 255
image_count += 1
output_path = os.path.join(DATA_PATH,'output')
if not os.path.exists(output_path):
os.makedirs(output_path)
filename = os.path.join(output_path,f"train-{cnt}.png")
im = Image.fromarray(image_array)
im.save(filename)
generator = build_generator(SEED_SIZE, IMAGE_CHANNELS)
noise = tf.random.normal([1, SEED_SIZE])
generated_image = generator(noise, training=False)
plt.imshow(generated_image[0, :, :, 0])
image_shape = (GENERATE_SQUARE,GENERATE_SQUARE,IMAGE_CHANNELS)
discriminator = build_discriminator(image_shape)
decision = discriminator(generated_image)
print (decision)
cross_entropy = tf.keras.losses.BinaryCrossentropy()
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(1.5e-4,0.5)
discriminator_optimizer = tf.keras.optimizers.Adam(1.5e-4,0.5)
@tf.function
def train_step(images):
seed = tf.random.normal([BATCH_SIZE, SEED_SIZE])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(seed, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(\
gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(\
disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(
gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(
gradients_of_discriminator,
discriminator.trainable_variables))
return gen_loss,disc_loss
def train(dataset, epochs):
fixed_seed = np.random.normal(0, 1, (PREVIEW_ROWS * PREVIEW_COLS,
SEED_SIZE))
start = time.time()
for epoch in range(epochs):
epoch_start = time.time()
gen_loss_list = []
disc_loss_list = []
for image_batch in dataset:
t = train_step(image_batch)
gen_loss_list.append(t[0])
disc_loss_list.append(t[1])
g_loss = sum(gen_loss_list) / len(gen_loss_list)
d_loss = sum(disc_loss_list) / len(disc_loss_list)
epoch_elapsed = time.time()-epoch_start
print (f'Epoch {epoch+1}, gen loss={g_loss},disc loss={d_loss},'\
' {hms_string(epoch_elapsed)}')
save_images(epoch,fixed_seed)
elapsed = time.time()-start
print (f'Training time: {hms_string(elapsed)}')
train(train_dataset, EPOCHS)