我正在审查一种方法方差分析并尝试整合最小二乘均值。这是 mtcars 的一个例子。
mtcars.mod <- mutate(mtcars, cyl.chr = case_when(
cyl == 4 ~ "A",
cyl == 6 ~ "B",
cyl == 8 ~ "C"
))
library(lsmeans)
model <- lm(mpg ~ cyl.chr, data = mtcars.mod)
lsmeans(model,
~ cyl.chr,
adjust = "sidak")
我的输出是这样的:
cyl.chr lsmean SE df lower.CL upper.CL
A 26.7 0.972 29 24.2 29.1
B 19.7 1.218 29 16.7 22.8
C 15.1 0.861 29 12.9 17.3
我试图得到看起来像这样的东西(值不能反映真实数据;它们是来自https://rcompanion.org/handbook/G_06.html的填充物/示例):
$contrasts
contrast estimate SE df z.ratio p.value
A - B 4.943822 1.3764706 NA 3.5916658 0.0010
A - C 0.633731 0.9055691 NA 0.6998152 0.7636
B - C -4.310091 1.3173294 NA -3.2718403 0.0031
P value adjustment: tukey method for comparing a family of 3 estimates
### Remember to ignore “estimate” and “SE” of differences with CLM,
### as well as “lsmeans” in the output not shown here
我错过了什么?