0

我现在正在处理一项任务,因为我们正在进入我们的图论单元,它是福特 Fulkerson 算法的实现。这个想法是我们有一个带有一定数量节点的加权有向图。我们还提供了图本身,它是有向边和节点的集合,但是,鉴于节点和边的构造,我们必须使用边作为我们的遍历方法(它们是由起始节点、权重组成的对象,和结束节点)。

我已经降低了 DFS,但在实际生成最终加权图时遇到了困难。就目前而言,我能够获得正确的最大流量,但是我的边缘附加了错误的权重,目前甚至没有加起来到最大流量。我怀疑错误来自我如何计算残差图边缘的流量,因为它目前只是从当前权重值中减去流量。我知道在普通的福特 Fulkerson 中,每条边的残差都有两个方向,但在我实现它的方式中,我只有一个,因为 Graphs 的构造函数没有这样做。我还需要在最后返回我的残差以查看所有顶点的值及其权重,

福特富尔克森级

import java.lang.reflect.Array;
import java.util.*;
import java.io.File;

public class FordFulkerson {

    public static ArrayList<Integer> pathDFS(Integer source, Integer destination, WGraph graph) {
        Stack<Integer> toVisit = new Stack<>();
        ArrayList<Integer> visited = new ArrayList<>();
        HashMap<Integer, Integer> parents = new HashMap<>();
        toVisit.push(0);
        boolean flag = false;
        while (!toVisit.isEmpty()) {
            int node = toVisit.pop();
            visited.add(node);
            if (node == destination) {
                flag = true;
                break;
            }
            for (Edge curEdge : graph.getEdges()) {
                if ((curEdge.nodes[0] == node) &&(curEdge.weight>0)&&(!visited.contains(curEdge.nodes[1]))) {
                    toVisit.push(curEdge.nodes[1]);
                    parents.put(curEdge.nodes[1], curEdge.nodes[0]);
                }
            }
        }
        if (flag) {
            ArrayList<Integer> path = new ArrayList<>();
            int current = destination;
            while (current != source) {
                path.add(0, current);
                current = parents.get(current);
            }
            path.add(0, source);
            return path;
        }
        return new ArrayList<>();
    }


    public static String fordfulkerson(WGraph graph) {
        ArrayList<Integer> result = pathDFS(graph.getSource(), graph.getDestination(), graph);
        WGraph residual = new WGraph(graph);
        String answer = "";
        int maxFlow = 0;
        while (!result.isEmpty()) {
            int flow = Integer.MAX_VALUE;
            int parentNode;
            int childNode;
            for (int i=result.size()-1; 0 < i; i--) {
                parentNode = result.get(i-1);
                childNode = result.get(i);
                flow = Math.min(flow,residual.getEdge(parentNode,childNode).weight);
            }
            for (int i=0; i < result.size()-1; i++) {
                parentNode = result.get(i);
                childNode = result.get(i+1);
                residual.getEdge(parentNode,childNode).weight -= flow;
//              residual.getEdge(parentNode,childNode).weight -= flow;
            }
            maxFlow += flow;
            result = pathDFS(graph.getSource(),graph.getDestination(),residual);
        }
        answer += maxFlow + "\n" + residual.toString();
        return answer;

}
    

     public static void main(String[] args){
        String file = args[0];
        File f = new File(file);
        WGraph g = new WGraph(file);
        System.out.println(fordfulkerson(g));
     }
}

图形和边缘类

import java.io.*;
import java.util.*;

class Edge{
    
    public int[] nodes = new int[2]; /*The nodes connected by the edge*/
    public Integer weight; /*Integer so we can use Comparator*/
    
    Edge(int i, int j, int w){
        this.nodes[0] = i;
        this.nodes[1] = j;
        this.weight = w;
    }

    @Override
    public String toString() {
        return String.format("Edge(%s,%s,%s)",this.nodes[0],this.nodes[1],this.weight);
    }

}

public class WGraph{

    private ArrayList<Edge> edges = new ArrayList<Edge>();
    private ArrayList<Integer> nodes = new ArrayList<Integer>();
    private int nb_nodes = 0;
    private Integer source = 0;
    private Integer destination =0;

    WGraph() {
    }
    
    WGraph(WGraph graph) {
        for(Edge e:graph.edges){
            this.addEdge(new Edge(e.nodes[0],e.nodes[1],e.weight));
        }
        this.source = graph.source;
        this.destination = graph.destination;
    }

    WGraph(String file) throws RuntimeException {
        try {
            Scanner f = new Scanner(new File(file));
            String[] ln = f.nextLine().split("\\s+"); /*first line is the source and destination*/
            this.source = Integer.parseInt(ln[0]);
            this.destination = Integer.parseInt(ln[1]);
            int number_nodes = Integer.parseInt(f.nextLine()); /*second line is the number of nodes*/

            while (f.hasNext()){
                String[] line = f.nextLine().split("\\s+");
                /*Make sure there is 3 elements on the line*/
                if (line.length != 3){
                    continue;
                }
                int i = Integer.parseInt(line[0]);
                int j = Integer.parseInt(line[1]);
                int w = Integer.parseInt(line[2]);
                Edge e = new Edge(i, j, w);
                this.addEdge(e);
            }
            f.close();

            /*Sanity checks*/
            if (number_nodes != this.nb_nodes){
                throw new RuntimeException("There are " + this.nb_nodes + " nodes while the file specifies " + number_nodes);
            }
            for (int i = 0; i < this.nodes.size(); i++){
                if ((this.nodes.get(i) >= this.nb_nodes) || (this.nodes.get(i) < 0)){
                    throw new RuntimeException("The node " + this.nodes.get(i) + " is outside the range of admissible values, between 0 and " + this.nb_nodes + "-1");
                }
            }
            if(!this.nodes.contains(source)){
                throw new RuntimeException("The source must be one of the nodes");
            }
            if(!this.nodes.contains(destination)){
                throw new RuntimeException("The destination must be one of the nodes");
            }

        }
        catch (FileNotFoundException e){
            System.out.println("File not found!");
            System.exit(1);
        }


    }
    
    public void addEdge(Edge e) throws RuntimeException{
        /*Ensures that it is a new edge if both nodes already in the graph*/
        int n1 = e.nodes[0];
        int n2 = e.nodes[1];
        if (this.nodes.indexOf(n1) >= 0 && this.nodes.indexOf(n2) >= 0){
            for (int z = 0; z < this.edges.size(); z++){
                int[] n = this.edges.get(z).nodes;
                if ((n1 == n[0] && n2 == n[1])){
                    throw new RuntimeException("The edge (" + n1 + ", " + n2 + ") already exists");
                }
            }
        }

        /*Update nb_nodes if necessary*/
        if (this.nodes.indexOf(n1) == -1){
            this.nodes.add(n1);
            this.nb_nodes += 1;
        }
        if (this.nodes.indexOf(n2) == -1){
            this.nodes.add(n2);
            this.nb_nodes += 1;
        }

        this.edges.add(e);
    }
    
    public Edge getEdge(Integer node1, Integer node2){      
        for(Edge e:edges){
            if(e.nodes[0]==node1 && e.nodes[1]==node2){
                return e;
            }
        }
        return null;
    }
    public void setSource(int source){
        this.source = source;
    }
    
    public void setDestination(int destination){
        this.destination = destination;
    }
    
    public int getSource(){
        return this.source;
    }
    
    public int getDestination(){
        return this.destination;
    }
    
    public void setEdge(Integer node1, Integer node2, int weight){
        for(Edge e:edges){
            if(e.nodes[0]==node1 && e.nodes[1]==node2){
                e.weight=weight;
            }
        }
    }

    public ArrayList<Edge> listOfEdgesSorted(){
        ArrayList<Edge> edges = new ArrayList<Edge>(this.edges);
        Collections.sort(edges, new Comparator<Edge>() {
            public int compare(Edge  e1, Edge  e2) 
            {   
                return  e2.weight.compareTo(e1.weight);
            }   
        }); 
        return edges;
    }

    public ArrayList<Edge> getEdges(){
        return this.edges;
    }

    public int getNbNodes(){
        return this.nb_nodes;
    }

    public String toString(){
        String out = Integer.toString(this.source)+ " " + Integer.toString(this.destination)+"\n";
        out += Integer.toString(this.nb_nodes);
        for (int i = 0; i < this.edges.size(); i++){
            Edge e = edges.get(i);
            out += "\n" + e.nodes[0] + " " + e.nodes[1] + " " + e.weight;
        }
        return out;
    }
}

作为参考,我有输入

0 5
6
0 1 16
0 2 13
1 3 12
2 1 4
2 4 14
3 2 9
3 5 20
4 3 7
4 5 4

它定义了一个具有 5 个节点和 9 个边的起始​​图,它们的权重偏向一边。正确的输出是:

23
0 5
6
0 1 12
0 2 11
1 3 12
2 1 0
2 4 11
3 2 0
3 5 19
4 3 7
4 5 4

但是,在运行我的 Ford Fulkerson 时,我得到以下输出:

23
0 5
6
0 1 6
0 2 0
1 3 0
2 1 2
2 4 3
3 2 9
3 5 1
4 3 0
4 5 0

我一直在看下面的GeeksforGeeks 文章,其中他们从有向图开始,但后来不知何故能够以相反的方向访问顶点:

        // update residual capacities of the edges and
        // reverse edges along the path
        for (v = t; v != s; v = parent[v]) {
            u = parent[v];
            rGraph[u][v] -= path_flow;
            rGraph[v][u] += path_flow;
        }

关于从哪里开始寻找或我做错了什么的任何指示或提示都会很棒。

4

0 回答 0