在 TfidfVectorizer 输出上应用 SelectKBest 后,我们在文档术语矩阵中获得了如此多的重复特征。我想删除那些重复的功能。我尝试了一些方法来删除这些冗余功能,但是我需要手动执行很多步骤,如下所示:
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_selection import SelectKBest, chi2
text = ["How is your brother? ",
"How are your siblings? ",
"Who is coming? ",
"Who is going? "
]
target = [1,1, 0,0]
df = pd.DataFrame({'text': text, 'target': target})
vectorizer = TfidfVectorizer(ngram_range=(1, 5), analyzer = 'char')
sparsedtm = vectorizer.fit_transform(df['text'])
## Selecting best features
k_best = SelectKBest(chi2, k=5)
bestfeat = k_best.fit_transform(sparsedtm, df['target'])
mask = k_best.get_support() #list of booleans
## Filtered features using chi-square
new_features = [] # The list of your K best features
for bool, feature in zip(mask, vectorizer.get_feature_names()):
if bool:
new_features.append(feature)
newdf = pd.DataFrame(bestfeat.todense(), columns=new_features)
print(newdf)
我的输出如下所示:
r wh who who who i
0 0.264662 0.000000 0.000000 0.000000 0.000000
1 0.168275 0.000000 0.000000 0.000000 0.000000
2 0.000000 0.117124 0.117124 0.117124 0.117124
3 0.000000 0.123835 0.123835 0.123835 0.123835
我想从此 DTM中删除wh、who 和。who i为了删除这些冗余功能,我从 SO 中找到了以下代码:
## Removing similar column from a Document Term Matrix
class removeSameCols(object) :
def __init__(self) :
pass
def _delSameCols(self, df) :
cols = []
for i in range(df.shape[1]) :
for j in range(i+1, df.shape[1]) :
if (df.iloc[:,i].dtype!='O') | (df.iloc[:,j].dtype!='O') :
if np.array_equal(df.iloc[:,i], df.iloc[:,j]) :
cols.append(df.columns[j])
cols = list(set(cols))
return cols
def transform(self, x) :
dat = x.copy()
lstcols = list(set(dat.columns) - set(self.lstRemCols))
return dat.loc[:, lstcols]
def fit(self, x, y=None) :
dat = x.copy()
self.lstRemCols = self._delSameCols(dat)
# print(self.lstRemCols)
return self
rmCols = Pipeline([('remCols', removeSameCols())])
x_1 = rmCols.fit_transform(newdf)
print(x_1)
输出是:
wh r
0 0.000000 0.264662
1 0.000000 0.168275
2 0.117124 0.000000
3 0.123835 0.000000
现在,我想对其他一些样本进行转换,如下所示:
vecout = vectorizer.transform(df['text']) ## Using same training samples for transformation
ch2test = k_best.transform(vecout)
dftest = pd.DataFrame(ch2test.todense(), columns = new_features)
x_2 = rmCols.transform(dftest)
print(x_2)
输出是:
wh r
0 0.000000 0.264662
1 0.000000 0.168275
2 0.117124 0.000000
3 0.123835 0.000000
如何执行上述所有步骤Pipeline以避免手动执行如此多的中间步骤?任何帮助,将不胜感激!