2

让我们假设,我的数据就像

  group_id    col1
1        1     A,B
2        1     B,C
3        2     A,C
4        2     B,D
5        3     A,D
6        3 A,B,C,D

我想总结/变异 col1,其中它的元素在同一组中相交(通过 group_id)。我需要的输出就像(如果总结)

  group_id col1
1        1    B
2        2 <NA>
3        3  A,D

或像这样(如果变异)

  group_id col1
1        1    B
2        1    B
3        2 <NA>
4        2 <NA>
5        3  A,D
6        3  A,D

我可以通过使用函数轻松地创建一个联合,toString但我为如何在输出中包含公共元素而摸不着头脑。基本上intersect需要至少两个参数,因此在这里不起作用。

dput(df) 如下

df <-  structure(list(group_id = c(1L, 1L, 2L, 2L, 3L, 3L), col1 = c("A,B", 
"B,C", "A,C", "B,D", "A,D", "A,B,C,D")), class = "data.frame", row.names = c("1", 
"2", "3", "4", "5", "6"))
4

3 回答 3

1

您可以使用逗号拆分col1并使用Reduce+intersect来获取每个group_id.

library(dplyr)
df %>%
  group_by(group_id) %>%
  summarise(col1 = toString(Reduce(intersect, strsplit(col1, ','))))

#  group_id col1  
#*    <int> <chr> 
#1        1 "B"   
#2        2 ""    
#3        3 "A, D"
于 2021-03-05T07:52:20.477 回答
1

这会起作用吗:

library(dplyr)
library(tidyr)
df %>% separate_rows(col1) %>% 
   group_by(group_id, col1) %>% filter(n()>1) %>% 
   distinct() %>% group_by(group_id) %>% summarise(col1 = toString(col1)) %>% 
   right_join(df %>% select(group_id) %>% distinct()) %>% 
   arrange(group_id)
`summarise()` ungrouping output (override with `.groups` argument)
Joining, by = "group_id"
# A tibble: 3 x 2
  group_id col1 
     <int> <chr>
1        1 B    
2        2 NA   
3        3 A, D 
于 2021-03-05T07:57:12.023 回答
1

使用dplyrand的一种选择tidyr可能是:

df %>%
 separate_rows(col1) %>%
 count(group_id, col1) %>%
 group_by(group_id) %>%
 summarise(col1 = if_else(all(n == 1), NA_character_, paste(col1[n == 2], collapse = ",")))

  group_id col1 
     <int> <chr>
1        1 B    
2        2 <NA> 
3        3 A,D  
于 2021-03-05T07:58:30.893 回答