我遇到了一个问题:如果对 (p-1)/2 使用经典除法,那么 512 位奇数的代码会非常慢。但是使用楼层划分,它可以立即生效。是浮点数转换引起的吗?
def solovayStrassen(p, iterations):
for i in range(iterations):
a = random.randint(2, p - 1)
if gcd(a, p) > 1:
return False
first = pow(a, int((p - 1) / 2), p)
j = (Jacobian(a, p) + p) % p
if first != j:
return False
return True
完整代码
import random
from math import gcd
#Jacobian symbol
def Jacobian(a, n):
if (a == 0):
return 0
ans = 1
if (a < 0):
a = -a
if (n % 4 == 3):
ans = -ans
if (a == 1):
return ans
while (a):
if (a < 0):
a = -a
if (n % 4 == 3):
ans = -ans
while (a % 2 == 0):
a = a // 2
if (n % 8 == 3 or n % 8 == 5):
ans = -ans
a, n = n, a
if (a % 4 == 3 and n % 4 == 3):
ans = -ans
a = a % n
if (a > n // 2):
a = a - n
if (n == 1):
return ans
return 0
def solovayStrassen(p, iterations):
for i in range(iterations):
a = random.randint(2, p - 1)
if gcd(a, p) > 1:
return False
first = pow(a, int((p - 1) / 2), p)
j = (Jacobian(a, p) + p) % p
if first != j:
return False
return True
def findFirstPrime(n, k):
while True:
if solovayStrassen(n,k):
return n
n+=2
a = random.getrandbits(512)
if a%2==0:
a+=1
print(findFirstPrime(a,100))