我正在研究 Watson NLU,我需要对问卷数据进行分析。来自不同人的大约 300 个答案。我可以在“...”格式的文本上运行它,但我很想获得一些帮助,了解如何一次运行所有 300 个。我当前的输入是在带有 ID 列的 excel 中。感谢您对此进行调查。
nlu_api_key = "MY API KEY"
nlu_url = "https://api.eu-gb.natural-language-understanding.watson.cloud.ibm.com/instances/MY INSTANCE"
import json
from ibm_watson import NaturalLanguageUnderstandingV1
from ibm_cloud_sdk_core.authenticators import IAMAuthenticator
from ibm_watson.natural_language_understanding_v1 import Features, EntitiesOptions, KeywordsOptions, CategoriesOptions,SentimentOptions
import pandas as pd
gtm_Q6 = pd.read_excel(r'C:\Users\...\INPUT FILE.xlsx', sheet_name='OUPUT1')
print(gtm_Q6)
authenticator = IAMAuthenticator(nlu_api_key)
natural_language_understanding = NaturalLanguageUnderstandingV1(
version='2020-08-01',
authenticator=authenticator)
natural_language_understanding.set_service_url(nlu_url)
response = natural_language_understanding.analyze(
text='Where is the firetruck with the flaming paint the tigers on top?',
features=Features(
entities=EntitiesOptions(emotion=True, sentiment=True, limit=5),
keywords=KeywordsOptions(emotion=True, sentiment=True,limit=5),
categories=CategoriesOptions(limit=3),
sentiment=SentimentOptions(targets=['investments']) #sentiment=SentimentOptions(targets=['stocks'])
)).get_result()
print(json.dumps(response, indent=2))
RESP_ID | 回答 |
---|---|
Q6_109.000000 | 团队建设 |
Q6_110.000000 | 技术和服务之间的支持和协调 |
Q6_111.000000 | 技能建设 |
Q6_113.000000 | 快速找到正确的资源 |
Q6_114.000000 | 有关当前更改的实用性的信息 |