我正在尝试使用简单的数据集执行 RDA 分析,但即使数据已标准化,我仍然会遇到相同的错误。谁能帮我理解这个模型有什么问题?
`view(data_RDA)
summary(data_RDA)
abiotic.lake<-data_RDA[, c(1:11)]
biotic.lake<-data_RDA[, c(12:20)]
biotic.lake<-decostand(biotic.lake,"hellinger")
abiotic.lake<-decostand(abiotic.lake,"standardize")
rda.lake<- rda(biotic.lake, abiotic.lake)
plot(rda.lake, type="text") #The error starts at this point
anova.cca(rda.lake)
summary(rda.lake)
coef(rda.lake)
`
当我尝试运行情节线时出现的错误:
Error in cbind(x$CCA$v, x$CA$v)[, choices, drop = FALSE] :
subscript out of bounds
我认为没有执行分析,因为 rda.lake 的摘要仅返回 RDA1 结果。
数据被识别为数字。
anova.cca 函数仅返回零作为残差并且不显示 p 值,这让我相信数据或模型存在问题。
这些是实际使用的表,都有 6 行。
生物湖
钱安 | 瘸子 | 迪诺 | 克里斯 | 桑特 | 迪亚特 | 欧格尔 | 齐涅 | 克洛罗 |
---|---|---|---|---|---|---|---|---|
0.0590634 | 0.21536114 | 1.286085 | 0.01117714 | 0.00000000 | 0.17741471 | 0.1438246 | 0.04127306 | 0.23323527 |
0.0590634 | 0.21536114 | 1.286085 | 0.01117714 | 0.00000000 | 0.17741471 | 0.1438246 | 0.04127306 | 0.23323527 |
0.0590634 | 0.21536114 | 1.286085 | 0.01117714 | 0.00000000 | 0.17741471 | 0.1438246 | 0.04127306 | 0.23323527 |
2.8144055 | 0.09724492 | 1.128178 | 0.02302370 | 0.03858338 | 0.01373549 | 0.9708160 | 0.90119103 | 0.08646308 |
2.8144055 | 0.09724492 | 1.128178 | 0.02302370 | 0.03858338 | 0.01373549 | 0.9708160 | 0.90119103 | 0.08646308 |
2.8144055 | 0.09724492 | 1.128178 | 0.02302370 | 0.03858338 | 0.01373549 | 0.9708160 | 0.90119103 | 0.08646308 |
非生物湖
教授 | Temp_H2O | 外径 | 条件 | N_Tot | NO2 | NO3 | 建议零售价 | 西奥 | Zmax | 宙 |
---|---|---|---|---|---|---|---|---|---|---|
0.0 | 20.7 | 8.15 | 98 | 230.72 | 9.28 | 294.32 | 15.91 | 3.72 | 4.8 | 4.5 |
2.0 | 20.4 | 7.16 | 105 | 228.61 | 8.56 | 352.34 | 8.92 | 4.49 | 4.8 | 4.5 |
4.8 | 20.0 | 5.20 | 107 | 190.82 | 6.82 | 293.81 | 11.15 | 7.82 | 4.8 | 4.5 |
0.0 | 30.4 | 9.24 | 100 | 610.28 | 3.46 | 42.82 | 36.15 | 13.17 | 5.0 | 2.0 |
2.0 | 28.3 | 6.62 | 110 | 612.11 | 3.63 | 48.19 | 32.19 | 11.94 | 5.0 | 2.0 |
5.0 | 25.8 | 2.13 | 115 | 560.31 | 4.69 | 60.98 | 35.30 | 11.03 | 5.0 | 2.0 |
- 编辑:根据需要,“dput”的输出
块引用
`dput(data_RDA)
structure(list(Prof = c(0, 2, 4.8, 0, 2, 5), Temp_H2O = c(20.7, 20.4, 20, 30.4, 28.3, 25.8), OD = c(8.15, 7.16, 5.2, 9.24, 6.62, 2.13), Cond = c(98L, 105L, 107L, 100L, 110L, 115L), N_Tot = c(230.72, 228.61, 190.82, 610.28, 612.11, 560.31), NO2 = c(9.28, 8.56, 6.82, 3.46, 3.63, 4.69), NO3 = c(294.32, 352.34, 293.81, 42.82, 48.19, 60.98), SRP = c(15.91, 8.92, 11.15, 36.15, 32.19, 35.3), SIO = c(3.72, 4.49, 7.82, 13.17, 11.94, 11.03), Zmax = c(4.8, 4.8, 4.8, 5, 5, 5), Zeu = c(4.5, 4.5, 4.5, 2, 2, 2), Cian = c(0.0590634, 0.0590634, 0.0590634, 2.814405487, 2.814405487, 2.814405487), Crip = c(0.215361139, 0.215361139, 0.215361139, 0.097244921, 0.097244921, 0.097244921), Dino = c(1.286084811, 1.286084811, 1.286084811, 1.128178481, 1.128178481, 1.128178481), Cris = c(0.011177144, 0.011177144, 0.011177144, 0.023023705, 0.023023705, 0.023023705), Xant = c(1e-07, 1e-07, 1e-07, 0.038583378, 0.038583378, 0.038583378), Diat = c(0.17741471, 0.17741471, 0.17741471, 0.01373549, 0.01373549, 0.01373549), Eugl = c(0.14382456, 0.14382456, 0.14382456, 0.970816029, 0.970816029, 0.970816029), Zigne = c(0.041273061, 0.041273061, 0.041273061, 0.901191033, 0.901191033, 0.901191033), Cloro = c(0.233235275, 0.233235275, 0.233235275, 0.086463085, 0.086463085, 0.086463085)), class = "data.frame", row.names = c(NA, -6L))
- 编辑 2:根据需要,rda.lake 的输出:
块引用
'rda.lago
Call: rda(X = biotic.lake, Y = abiotic.lake)
Inertia Proportion Rank
Total 0.01198 1.00000
Constrained 0.01198 1.00000 1
Unconstrained 0.00000 0.00000 0
Inertia is variance
Some constraints were aliased because they were collinear (redundant)
Eigenvalues for constrained axes:
RDA1
0.011977 '
- 编辑 3:由 rda 分析产生的 NA。
块引用
'coef(rda.lake)
RDA1
Prof 0.003503013
Temp_H2O -0.152503172
OD 0.100134578
Cond 0.020938441
N_Tot -0.295691269
NO2 NA
NO3 NA
SRP NA
SIO NA
Zmax NA
Zeu NA '