我正在为我的代码寻找一些指导。
#include <mega164a.h>
// Declare your global variables here
#define BUTTON1 PINC7
#define Freq_e 0xEF
#define Freq_B 0x9F
#define Freq_G 0xDE
#define Freq_D 0xBD
#define Freq_A 0xF7
#define Freq_E 0xCF
// Standard Input/Output functions
#include <stdio.h>
#include <delay.h>
#include <stdbool.h>
void USARTInit()
{
// USART0 initialization
// Communication Parameters: 8 Data, 1 Stop, No Parity
// USART0 Receiver: On
// USART0 Transmitter: On
// USART0 Mode: Asynchronous
// USART0 Baud rate: 9600
UCSR0A = 0x00;
UCSR0B = 0xD8;
UCSR0C = 0x06;
UBRR0H = 0x00;
UBRR0L = 0x81;
#asm("sei")
}
bool button_state()
{
if (!((PINC & (1 << BUTTON1)) >> BUTTON1))
{
delay_ms(30);
if (!((PINC & (1 << BUTTON1)) >> BUTTON1))
return true;
}
return false;
}
unsigned char SelectedFreq=0;
/*unsigned char readanalog()
{
unsigned short val=0;
while(ADCSRA&(1<<ADSC));
val=ADCL;
val+=(ADCH<<8);
return ADCL;
}
*/
float val1=0.0;
float desirefreqe=329.63;
float desirefreqB=246.94;
float desirefreqG=196;
float desirefreqD=146.83;
float desirefreqA=110;
float desirefreqEs=82.41;
void compfreq(unsigned char SelectedFreq)
{
float tempfreq=0;
if(SelectedFreq==0){
tempfreq=desirefreqe;
}
else if(SelectedFreq==1){
tempfreq=desirefreqB;
}
else if(SelectedFreq==2){
tempfreq=desirefreqG;
}
else if(SelectedFreq==3){
tempfreq=desirefreqD;
}
else if(SelectedFreq==4){
tempfreq=desirefreqA;
}
else if(SelectedFreq==5){
tempfreq=desirefreqEs;
}
if(val1>(tempfreq+2)){
PORTB=0x9c;
}
else if(val1<(tempfreq-2)){
PORTB=0xE2;
}
else{
PORTB=0x81;
}
}
void closefreq(){
if(val1>=(desirefreqe-((desirefreqe-desirefreqB)/2))){
PORTD=Freq_e;
}
else if(val1>=(desirefreqB-((desirefreqB-desirefreqG)/2))){
PORTD=Freq_B;
}
else if(val1>=(desirefreqG-((desirefreqG-desirefreqD)/2))){
PORTD=Freq_G;
}
else if(val1>=(desirefreqD-((desirefreqD-desirefreqA)/2))){
PORTD=Freq_D;
}
else if(val1>(desirefreqA-((desirefreqA-desirefreqEs)/2))){
PORTD=Freq_A;
}
else {
PORTD=Freq_E;
}
}
/*unsigned char read_adc(unsigned char adc_input) {
ADMUX = adc_input | ADC_VREF_TYPE;
// Delay needed for the stabilization of the ADC input voltage
delay_us(10);
// Start the AD conversion
ADCSRA |= (1 << ADSC);
// Wait for the AD conversion to complete
while ((ADCSRA & (1 << ADIF)) == 0);
ADCSRA |= (1 << ADIF);
return ADCH;
}
*/
unsigned char read_adc1(void)
{
ADCSRA |= 0b01000000; //start conversion;
while (ADCSRA&(0b01000000)); //wait conversion end
return ADCH;
}
void main(void)
{
// Declare your local variables here
// Crystal Oscillator division factor: 1
#pragma optsize-
CLKPR=(1<<CLKPCE);
CLKPR=(0<<CLKPCE) | (0<<CLKPS3) | (0<<CLKPS2) | (0<<CLKPS1) | (0<<CLKPS0);
#ifdef _OPTIMIZE_SIZE_
#pragma optsize+
#endif
// Input/Output Ports initialization
// Port A initialization
// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In
DDRA=(0<<DDA7) | (0<<DDA6) | (0<<DDA5) | (0<<DDA4) | (0<<DDA3) | (0<<DDA2) | (0<<DDA1) | (0<<DDA0);
PRR &= ~(1 << PRADC);
//ADMUX=ADC_VREF_TYPE;
ADMUX = 0b10100111; // set ADC0
ADCSRA = 0b10000111; //set ADEN, precale by 128
// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T
PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | (0<<PORTA3) | (0<<PORTA2) | (0<<PORTA1) | (0<<PORTA0);
// Port B initialization
// Function: Bit7=In Bit6=Out Bit5=Out Bit4=Out Bit3=Out Bit2=Out Bit1=Out Bit0=Out
DDRB=(0<<DDB7) | (1<<DDB6) | (1<<DDB5) | (1<<DDB4) | (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDB0);
// State: Bit7=T Bit6=0 Bit5=0 Bit4=0 Bit3=0 Bit2=0 Bit1=0 Bit0=0
PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | (0<<PORTB3) | (0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0);
// Port C initialization
// Function: Bit7=In Bit6=Out Bit5=Out Bit4=Out Bit3=Out Bit2=Out Bit1=Out Bit0=Out
DDRC=(0<<DDC7) | (1<<DDC6) | (1<<DDC5) | (1<<DDC4) | (1<<DDC3) | (1<<DDC2) | (1<<DDC1) | (1<<DDC0);
// State: Bit7=T Bit6=0 Bit5=0 Bit4=0 Bit3=0 Bit2=0 Bit1=0 Bit0=0
PORTC=(1<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | (0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0);
// Port D initialization
// Function: Bit7=In Bit6=Out Bit5=Out Bit4=Out Bit3=Out Bit2=Out Bit1=Out Bit0=Out
DDRD=(0<<DDD7) | (1<<DDD6) | (1<<DDD5) | (1<<DDD4) | (1<<DDD3) | (1<<DDD2) | (1<<DDD1) | (1<<DDD0);
// State: Bit7=T Bit6=0 Bit5=0 Bit4=0 Bit3=0 Bit2=0 Bit1=0 Bit0=0
PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | (0<<PORTD3) | (0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0);
// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=0xFF
// OC0A output: Disconnected
// OC0B output: Disconnected
TCCR0A=(0<<COM0A1) | (0<<COM0A0) | (0<<COM0B1) | (0<<COM0B0) | (0<<WGM01) | (0<<WGM00);
TCCR0B=(0<<WGM02) | (0<<CS02) | (0<<CS01) | (0<<CS00);
TCNT0=0x00;
OCR0A=0x00;
OCR0B=0x00;
// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer1 Stopped
// Mode: Normal top=0xFFFF
// OC1A output: Disconnected
// OC1B output: Disconnected
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | (0<<WGM11) | (0<<WGM10);
TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | (0<<CS12) | (0<<CS11) | (0<<CS10);
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;
// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=0xFF
// OC2A output: Disconnected
// OC2B output: Disconnected
ASSR=(0<<EXCLK) | (0<<AS2);
TCCR2A=(0<<COM2A1) | (0<<COM2A0) | (0<<COM2B1) | (0<<COM2B0) | (0<<WGM21) | (0<<WGM20);
TCCR2B=(0<<WGM22) | (0<<CS22) | (0<<CS21) | (0<<CS20);
TCNT2=0x00;
OCR2A=0x00;
OCR2B=0x00;
// Timer/Counter 0 Interrupt(s) initialization
TIMSK0=(0<<OCIE0B) | (0<<OCIE0A) | (0<<TOIE0);
// Timer/Counter 1 Interrupt(s) initialization
TIMSK1=(0<<ICIE1) | (0<<OCIE1B) | (0<<OCIE1A) | (0<<TOIE1);
// Timer/Counter 2 Interrupt(s) initialization
TIMSK2=(0<<OCIE2B) | (0<<OCIE2A) | (0<<TOIE2);
// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
// Interrupt on any change on pins PCINT0-7: Off
// Interrupt on any change on pins PCINT8-15: Off
// Interrupt on any change on pins PCINT16-23: Off
// Interrupt on any change on pins PCINT24-31: Off
EICRA=(0<<ISC21) | (0<<ISC20) | (0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00);
EIMSK=(0<<INT2) | (0<<INT1) | (0<<INT0);
PCICR=(0<<PCIE3) | (0<<PCIE2) | (0<<PCIE1) | (0<<PCIE0);
// USART1 initialization
// USART1 disabled
UCSR1B=(0<<RXCIE1) | (0<<TXCIE1) | (0<<UDRIE1) | (0<<RXEN1) | (0<<TXEN1) | (0<<UCSZ12) | (0<<RXB81) | (0<<TXB81);
// Analog Comparator initialization
// Analog Comparator: Off
// The Analog Comparator's positive input is
// connected to the AIN0 pin
// The Analog Comparator's negative input is
// connected to the AIN1 pin
ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIE) | (0<<ACIC) | (0<<ACIS1) | (0<<ACIS0);
ADCSRB=(0<<ACME);
// Digital input buffer on AIN0: On
// Digital input buffer on AIN1: On
DIDR1=(0<<AIN0D) | (0<<AIN1D);
// ADC initialization
// ADC disabled
ADCSRA=(0<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | (0<<ADPS2) | (0<<ADPS1) | (0<<ADPS0);
// SPI initialization
// SPI disabled
SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | (0<<CPHA) | (0<<SPR1) | (0<<SPR0);
// TWI initialization
// TWI disabled
TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) | (0<<TWIE);
USARTInit();
while (1)
{
// readanalog();
val1 = read_adc1();
if( button_state())
{
SelectedFreq++;
SelectedFreq=SelectedFreq%6;
delay_ms(60);
}
if(SelectedFreq==0)
{
PORTC=Freq_e;
}
else if (SelectedFreq==1)
{
PORTC=Freq_B;
}
else if (SelectedFreq==2)
{
PORTC=Freq_G;
}
else if (SelectedFreq==3)
{
PORTC=Freq_D;
}
else if (SelectedFreq==4)
{
PORTC=Freq_A;
}
else if (SelectedFreq==5)
{
PORTC=Freq_E;
}
compfreq(SelectedFreq);
closefreq();
}
}
我所需要的只是一个可以从 atmega164 的 PINA1 读取频率的函数,仅此而已,但我不知道如何构建它。非常感谢所有帮助。在这里发布之前,我已经尝试了两个多星期来找到使我的代码工作的答案,但我无法做到。 代码无法从 PINA1 读取频率值
代码现在可以比较一个作为输入频率的值,并将其与 6 个不同节点(e、B、G、D、A、E)的 6 个频率进行比较。程序没有做的是从 PINA1 读取输入频率。