好的,我有更多时间考虑这个问题。正如我之前所说,我不再确定过滤边缘是问题所在。事实上,我认为伪代码有歧义;是否for each (v, w) in E
意味着每条边(正如字面意思所for each
暗示的那样),或者只有每条以 , 开头的边v
(如您合理假设的那样)?然后,在 for 循环之后,有问题的是循环v
中的最终结果,就像在 Python 中一样?还是回到原来的样子?在这种情况下,伪代码没有明确定义的作用域行为!(如果最后的值是最后一个任意值,那就太奇怪了v
for
v
v
v
从循环。这表明过滤是正确的,因为在这种情况下,v
自始至终都意味着同一件事。)
但是,在任何情况下,您的代码中的明显错误都在这里:
idx[w] = (idx[w][0], min(idx[v][1], idx[w][1]))
根据伪代码,那肯定是
idx[v] = (idx[v][0], min(idx[v][1], idx[w][1]))
一旦你做出改变,你就会得到预期的结果。坦率地说,您犯了这个错误并不让我感到惊讶,因为您使用的是一种非常奇怪且违反直觉的数据结构。这就是我认为的改进——它只增加了几行,而且我发现它更具可读性。
import itertools
def strong_connect(vertex):
global edges, indices, lowlinks, connected_components, index, stack
indices[vertex] = index
lowlinks[vertex] = index
index += 1
stack.append(vertex)
for v, w in (e for e in edges if e[0] == vertex):
if indices[w] < 0:
strong_connect(w)
lowlinks[v] = min(lowlinks[v], lowlinks[w])
elif w in stack:
lowlinks[v] = min(lowlinks[v], indices[w])
if indices[vertex] == lowlinks[vertex]:
connected_components.append([])
while stack[-1] != vertex:
connected_components[-1].append(stack.pop())
connected_components[-1].append(stack.pop())
edges = [('A', 'B'), ('B', 'C'), ('C', 'D'), ('D', 'E'),
('E', 'A'), ('A', 'E'), ('C', 'A'), ('C', 'E'),
('D', 'F'), ('F', 'B'), ('E', 'F')]
vertices = set(v for v in itertools.chain(*edges))
indices = dict((v, -1) for v in vertices)
lowlinks = indices.copy()
connected_components = []
index = 0
stack = []
for v in vertices:
if indices[v] < 0:
strong_connect(v)
print(connected_components)
但是,我发现这里使用全局变量令人反感。您可以将其隐藏在它自己的模块中,但我更喜欢创建可调用类的想法。在仔细查看了 Tarjan 的原始伪代码(顺便说一下,它确认了“过滤”版本是正确的)之后,我写了这个。它包括一个简单的Graph
类并进行几个基本测试:
from itertools import chain
from collections import defaultdict
class Graph(object):
def __init__(self, edges, vertices=()):
edges = list(list(x) for x in edges)
self.edges = edges
self.vertices = set(chain(*edges)).union(vertices)
self.tails = defaultdict(list)
for head, tail in self.edges:
self.tails[head].append(tail)
@classmethod
def from_dict(cls, edge_dict):
return cls((k, v) for k, vs in edge_dict.iteritems() for v in vs)
class _StrongCC(object):
def strong_connect(self, head):
lowlink, count, stack = self.lowlink, self.count, self.stack
lowlink[head] = count[head] = self.counter = self.counter + 1
stack.append(head)
for tail in self.graph.tails[head]:
if tail not in count:
self.strong_connect(tail)
lowlink[head] = min(lowlink[head], lowlink[tail])
elif count[tail] < count[head]:
if tail in self.stack:
lowlink[head] = min(lowlink[head], count[tail])
if lowlink[head] == count[head]:
component = []
while stack and count[stack[-1]] >= count[head]:
component.append(stack.pop())
self.connected_components.append(component)
def __call__(self, graph):
self.graph = graph
self.counter = 0
self.count = dict()
self.lowlink = dict()
self.stack = []
self.connected_components = []
for v in self.graph.vertices:
if v not in self.count:
self.strong_connect(v)
return self.connected_components
strongly_connected_components = _StrongCC()
if __name__ == '__main__':
edges = [('A', 'B'), ('B', 'C'), ('C', 'D'), ('D', 'E'),
('E', 'A'), ('A', 'E'), ('C', 'A'), ('C', 'E'),
('D', 'F'), ('F', 'B'), ('E', 'F')]
print strongly_connected_components(Graph(edges))
edge_dict = {'a':['b', 'c', 'd'],
'b':['c', 'a'],
'c':['d', 'e'],
'd':['e'],
'e':['c']}
print strongly_connected_components(Graph.from_dict(edge_dict))