我已经修改了这个 arcball 类,以便每次调用 arcball.rollforward(PI/180); 将矩阵旋转 1 度。我试图设置它,所以 arcball.rollback() 用累积的浮点 rotatebywithincludedfloaterror 调用,但它与没有浮点错误的回滚 360 度具有相同的度数错误。这是 1000 次完整旋转后偏离的距离,它应该是顶部立方体在 x 上的 1:1 反射
这是具有 1 * 360 度旋转和帧率循环的主要功能,用于测试(将帧率设置为 900 进行多次旋转,这样就不会永远花费)
Arcball arcball;
int i;
//framecount
int fcount, lastm;
float frate;
int fint = 3;
boolean[] keys = new boolean[13];
final int w = 0;
void setup() {
size(900, 700, P3D);
frameRate(60);
noStroke();
arcball = new Arcball(width/2, height/2, 100); //100 is radius
}
void draw() {
lights();
background(255,160,122);
print(" \n degree = " + i );
i++;
if(i <= (360 * 1)) { arcball.rollforward(PI/180); }
else { print(" break"); }
if(keys[w]) { arcball.rollforward(PI/180); }
translate(width/2, height/2-100, 0);
box(50);
translate(0, 200, 0);
arcball.run();
box(50);
fcount += 1;
int m = millis();
if (m - lastm > 1000 * fint) {
frate = float(fcount) / fint;
fcount = 0;
lastm = m;
println("fps: " + frate);
}
}
void keyPressed() {
switch(key) {
case 119:
keys[w] = true;
break;
}
}
void keyReleased() {
switch(key) {
case 119:
keys[w] = false;
break;
}
}
和轨迹球类
// Ariel and V3ga's arcball class with a couple tiny mods by Robert Hodgin and smaller mods by cubesareneat
class Arcball {
float center_x, center_y, radius;
Vec3 v_down, v_drag;
Quat q_now, q_down, q_drag;
Vec3[] axisSet;
int axis;
float mxv, myv;
float x, y;
float degreeW_count = 0;
float degreeS_count = 0;
float rotatebywithincludedfloaterror =0;
Arcball(float center_x, float center_y, float radius){
this.center_x = center_x;
this.center_y = center_y;
this.radius = radius;
v_down = new Vec3();
v_drag = new Vec3();
q_now = new Quat();
q_down = new Quat();
q_drag = new Quat();
axisSet = new Vec3[] {new Vec3(1.0f, 0.0f, 0.0f), new Vec3(0.0f, 1.0f, 0.0f), new Vec3(0.0f, 0.0f, 1.0f)};
axis = -1; // no constraints...
}
void rollforward(float radians2turn) {
rotatebywithincludedfloaterror = rotatebywithincludedfloaterror + (-1 * (((sin(radians2turn) * radius))/2));
if(degreeW_count >= 360) {
arcball.rollback(rotatebywithincludedfloaterror);
degreeW_count = 0;
rotatebywithincludedfloaterror = 0;
}
rollortilt(0, -1 * (((sin(radians2turn) * radius))/2));
degreeW_count = degreeW_count + 1; // need to edit this later to work with rotations other then 1 degree
}
void rollback(float radians2turn) {
rollortilt(0, ((sin(radians2turn) * radius))/2);
}
void rollortilt(float xtra, float ytra){
q_down.set(q_now);
v_down = XY_to_sphere(center_x, center_y);
q_down.set(q_now);
q_drag.reset();
v_drag = XY_to_sphere(center_x + xtra, center_y + ytra);
q_drag.set(Vec3.dot(v_down, v_drag), Vec3.cross(v_down, v_drag));
}
/*
void mousePressed(){
v_down = XY_to_sphere(mouseX, mouseY);
q_down.set(q_now);
q_drag.reset();
}
void mouseDragged(){
v_drag = XY_to_sphere(mouseX, mouseY);
q_drag.set(Vec3.dot(v_down, v_drag), Vec3.cross(v_down, v_drag));
}
*/
void run(){
q_now = Quat.mul(q_drag, q_down);
applyQuat2Matrix(q_now);
x += mxv;
y += myv;
mxv -= mxv * .01;
myv -= myv * .01;
}
Vec3 XY_to_sphere(float x, float y){
Vec3 v = new Vec3();
v.x = (x - center_x) / radius;
v.y = (y - center_y) / radius;
float mag = v.x * v.x + v.y * v.y;
if (mag > 1.0f){
v.normalize();
} else {
v.z = sqrt(1.0f - mag);
}
return (axis == -1) ? v : constrain_vector(v, axisSet[axis]);
}
Vec3 constrain_vector(Vec3 vector, Vec3 axis){
Vec3 res = new Vec3();
res.sub(vector, Vec3.mul(axis, Vec3.dot(axis, vector)));
res.normalize();
return res;
}
void applyQuat2Matrix(Quat q){
// instead of transforming q into a matrix and applying it...
float[] aa = q.getValue();
rotate(aa[0], aa[1], aa[2], aa[3]);
}
}
static class Vec3{
float x, y, z;
Vec3(){
}
Vec3(float x, float y, float z){
this.x = x;
this.y = y;
this.z = z;
}
void normalize(){
float length = length();
x /= length;
y /= length;
z /= length;
}
float length(){
return (float) Math.sqrt(x * x + y * y + z * z);
}
static Vec3 cross(Vec3 v1, Vec3 v2){
Vec3 res = new Vec3();
res.x = v1.y * v2.z - v1.z * v2.y;
res.y = v1.z * v2.x - v1.x * v2.z;
res.z = v1.x * v2.y - v1.y * v2.x;
return res;
}
static float dot(Vec3 v1, Vec3 v2){
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
static Vec3 mul(Vec3 v, float d){
Vec3 res = new Vec3();
res.x = v.x * d;
res.y = v.y * d;
res.z = v.z * d;
return res;
}
void sub(Vec3 v1, Vec3 v2){
x = v1.x - v2.x;
y = v1.y - v2.y;
z = v1.z - v2.z;
}
}
static class Quat{
float w, x, y, z;
Quat(){
reset();
}
Quat(float w, float x, float y, float z){
this.w = w;
this.x = x;
this.y = y;
this.z = z;
}
void reset(){
w = 1.0f;
x = 0.0f;
y = 0.0f;
z = 0.0f;
}
void set(float w, Vec3 v){
this.w = w;
x = v.x;
y = v.y;
z = v.z;
}
void set(Quat q){
w = q.w;
x = q.x;
y = q.y;
z = q.z;
}
static Quat mul(Quat q1, Quat q2){
Quat res = new Quat();
res.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z;
res.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y;
res.y = q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z;
res.z = q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x;
return res;
}
float[] getValue(){
// transforming this quat into an angle and an axis vector...
float[] res = new float[4];
float sa = (float) Math.sqrt(1.0f - w * w);
if (sa < EPSILON){
sa = 1.0f;
}
res[0] = (float) Math.acos(w) * 2.0f;
res[1] = x / sa;
res[2] = y / sa;
res[3] = z / sa;
return res;
}
}
跟踪浮动误差范围以返回相同的度数 arcball.rollforward()
void rollforward(float radians2turn) {
rotatebywithincludedfloaterror = rotatebywithincludedfloaterror + (-1 * (((sin(radians2turn) * radius))/2));
if(degreeW_count >= 360) {
arcball.rollback(rotatebywithincludedfloaterror);
degreeW_count = 0;
rotatebywithincludedfloaterror = 0;
}
rollortilt(0, -1 * (((sin(radians2turn) * radius))/2));
degreeW_count = degreeW_count + 1; // need to edit this later to work with rotations other then 1 degree
}