-1

我已经修改了这个 arcball 类,以便每次调用 arcball.rollforward(PI/180); 将矩阵旋转 1 度。我试图设置它,所以 arcball.rollback() 用累积的浮点 rotatebywithincludedfloaterror 调用,但它与没有浮点错误的回滚 360 度具有相同的度数错误。这是 1000 次完整旋转后偏离的距离,它应该是顶部立方体在 x 上的 1:1 反射

度数误差

这是具有 1 * 360 度旋转和帧率循环的主要功能,用于测试(将帧率设置为 900 进行多次旋转,这样就不会永远花费)

Arcball arcball;

int i;

//framecount
int fcount, lastm;
float frate;
int fint = 3;

boolean[] keys = new boolean[13];
    final int w = 0;


void setup() {
  size(900, 700, P3D); 
  frameRate(60);
  noStroke();
  arcball = new Arcball(width/2, height/2, 100);   //100 is radius
}

void draw() {
  lights();
  background(255,160,122);
  
  print(" \n degree = " + i );
  i++;
  if(i <= (360 * 1)) { arcball.rollforward(PI/180); }
  else { print(" break"); }
  
  if(keys[w]) { arcball.rollforward(PI/180); }

  translate(width/2, height/2-100, 0);
  box(50);
   
  translate(0, 200, 0);
  arcball.run();
  box(50);  
  
  
  fcount += 1;
  int m = millis();
  if (m - lastm > 1000 * fint) {
    frate = float(fcount) / fint;
    fcount = 0;
    lastm = m;
    println("fps: " + frate);
  }
                           
}

void keyPressed() {
  switch(key) {
    case 119: 
        keys[w] = true;
        break;
  }
}
void keyReleased() {
  switch(key) {
    case 119: 
        keys[w] = false;
        break;
    } 
}

和轨迹球类

// Ariel and V3ga's arcball class with a couple tiny mods by Robert Hodgin and smaller mods by cubesareneat

class Arcball {
  float center_x, center_y, radius;
  Vec3 v_down, v_drag;
  Quat q_now, q_down, q_drag;
  Vec3[] axisSet;
  int axis;
  float mxv, myv;
  float x, y;
  
  float degreeW_count = 0;
  float degreeS_count = 0;
  float rotatebywithincludedfloaterror =0;
  
  Arcball(float center_x, float center_y, float radius){
    this.center_x = center_x;
    this.center_y = center_y;
    this.radius = radius;

    v_down = new Vec3();
    v_drag = new Vec3();

    q_now = new Quat();
    q_down = new Quat();
    q_drag = new Quat();

    axisSet = new Vec3[] {new Vec3(1.0f, 0.0f, 0.0f), new Vec3(0.0f, 1.0f, 0.0f), new Vec3(0.0f, 0.0f, 1.0f)};
    axis = -1;  // no constraints...    
  }

  void rollforward(float radians2turn) { 
    rotatebywithincludedfloaterror = rotatebywithincludedfloaterror + (-1 * (((sin(radians2turn) * radius))/2));
    if(degreeW_count >= 360) {
      arcball.rollback(rotatebywithincludedfloaterror);
      degreeW_count = 0;
      rotatebywithincludedfloaterror = 0;
    }
    rollortilt(0, -1 * (((sin(radians2turn) * radius))/2)); 
    degreeW_count = degreeW_count + 1; // need to edit this later to work with rotations other then 1 degree
  }
  void rollback(float radians2turn) { 
    rollortilt(0, ((sin(radians2turn) * radius))/2);
  }
  
  void rollortilt(float xtra, float ytra){
    q_down.set(q_now);
    v_down = XY_to_sphere(center_x, center_y);
    q_down.set(q_now);
    q_drag.reset();
    
    v_drag = XY_to_sphere(center_x + xtra, center_y + ytra);
    q_drag.set(Vec3.dot(v_down, v_drag), Vec3.cross(v_down, v_drag)); 
  }

/*
  void mousePressed(){
    v_down = XY_to_sphere(mouseX, mouseY);  
    q_down.set(q_now);
    q_drag.reset();
  }

  void mouseDragged(){
    v_drag = XY_to_sphere(mouseX, mouseY);
    q_drag.set(Vec3.dot(v_down, v_drag), Vec3.cross(v_down, v_drag));
  }
*/
  void run(){
    q_now = Quat.mul(q_drag, q_down);
    applyQuat2Matrix(q_now);
    
    x += mxv;
    y += myv;
    mxv -= mxv * .01;
    myv -= myv * .01;
  }
  
  Vec3 XY_to_sphere(float x, float y){
    Vec3 v = new Vec3();
    v.x = (x - center_x) / radius;
    v.y = (y - center_y) / radius;

    float mag = v.x * v.x + v.y * v.y;
    if (mag > 1.0f){
      v.normalize();
    } else {
      v.z = sqrt(1.0f - mag);
    }

    return (axis == -1) ? v : constrain_vector(v, axisSet[axis]);
  }

  Vec3 constrain_vector(Vec3 vector, Vec3 axis){
    Vec3 res = new Vec3();
    res.sub(vector, Vec3.mul(axis, Vec3.dot(axis, vector)));
    res.normalize();
    return res;
  }

  void applyQuat2Matrix(Quat q){
    // instead of transforming q into a matrix and applying it...

    float[] aa = q.getValue();
    rotate(aa[0], aa[1], aa[2], aa[3]);
  }
}

static class Vec3{
  float x, y, z;

  Vec3(){
  }

  Vec3(float x, float y, float z){
    this.x = x;
    this.y = y;
    this.z = z;
  }

  void normalize(){
    float length = length();
    x /= length;
    y /= length;
    z /= length;
  }

  float length(){
    return (float) Math.sqrt(x * x + y * y + z * z);
  }

  static Vec3 cross(Vec3 v1, Vec3 v2){
    Vec3 res = new Vec3();
    res.x = v1.y * v2.z - v1.z * v2.y;
    res.y = v1.z * v2.x - v1.x * v2.z;
    res.z = v1.x * v2.y - v1.y * v2.x;
    return res;
  }

  static float dot(Vec3 v1, Vec3 v2){
    return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
  }
  
  static Vec3 mul(Vec3 v, float d){
    Vec3 res = new Vec3();
    res.x = v.x * d;
    res.y = v.y * d;
    res.z = v.z * d;
    return res;
  }

  void sub(Vec3 v1, Vec3 v2){
    x = v1.x - v2.x;
    y = v1.y - v2.y;
    z = v1.z - v2.z;
  }
}

static class Quat{
  float w, x, y, z;

  Quat(){
    reset();
  }

  Quat(float w, float x, float y, float z){
    this.w = w;
    this.x = x;
    this.y = y;
    this.z = z;
  }

  void reset(){
    w = 1.0f;
    x = 0.0f;
    y = 0.0f;
    z = 0.0f;
  }

  void set(float w, Vec3 v){
    this.w = w;
    x = v.x;
    y = v.y;
    z = v.z;
  }

  void set(Quat q){
    w = q.w;
    x = q.x;
    y = q.y;
    z = q.z;
  }

  static Quat mul(Quat q1, Quat q2){
    Quat res = new Quat();
    res.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z;
    res.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y;
    res.y = q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z;
    res.z = q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x;
    return res;
  }
  
  float[] getValue(){
    // transforming this quat into an angle and an axis vector...

    float[] res = new float[4];

    float sa = (float) Math.sqrt(1.0f - w * w);
    if (sa < EPSILON){
      sa = 1.0f;
    }

    res[0] = (float) Math.acos(w) * 2.0f;
    res[1] = x / sa;
    res[2] = y / sa;
    res[3] = z / sa;
    return res;
  }
}

跟踪浮动误差范围以返回相同的度数 arcball.rollforward()

  void rollforward(float radians2turn) { 
    rotatebywithincludedfloaterror = rotatebywithincludedfloaterror + (-1 * (((sin(radians2turn) * radius))/2));
    if(degreeW_count >= 360) {
      arcball.rollback(rotatebywithincludedfloaterror);
      degreeW_count = 0;
      rotatebywithincludedfloaterror = 0;
    }
    rollortilt(0, -1 * (((sin(radians2turn) * radius))/2)); 
    degreeW_count = degreeW_count + 1; // need to edit this later to work with rotations other then 1 degree
  }
4

1 回答 1

0

在问题中使用我的想法重置每 2*PI

  if(keys[w]) { 
    arcball.rollforward(PI/180);
    degreeW_count = degreeW_count + 1;
  }

  if(degreeW_count == 360) {
    arcball = new Arcball(width/2, height/2, 100); // setset to original arcball at 0 degrees
    degreeW_count = 0;
  }

在轨迹球中

  void rollforward(float degrees2turn) { 
    rollortilt(0, -1 * (((sin(degrees2turn) * radius))/2));  // one degree forward 180/PI
  }

这完全避免了使用无理数和周期函数与任何数据类型累积的任何舍入误差!

于 2021-01-12T03:10:07.243 回答