1 回答
2
据我所知,假设1是正确的,但假设2不是。
实对称矩阵产生仅实数的特征值和特征向量。
但是,对于给定的特征值,相关的特征向量不一定是唯一的。
此外,对于实际上不是那么大或包含不是非常小的数字的矩阵,舍入误差不应该那么重要。
为了比较,我通过 JavaScript 版本的 RG.F(Real General,来自 EISPACK 库)运行您的测试矩阵: 特征值和特征向量计算器
这是输出:
特征值:
20
12
20
20
20
20
20
20
特征向量:
0.9354143466934854 0.35355339059327395 -0.021596710639534 -0.021596710639534 -0.021596710639534 -0.021596710639534 -0.021596710639533997 -0.021596710639533997
-0.1336306209562122 0.3535533905932738 -0.15117697447673797 -0.15117697447673797 -0.15117697447673797 -0.15117697447673797 -0.15117697447673797 -0.15117697447673797
-0.1336306209562122 0.3535533905932738 0.9286585574999623 -0.15117697447673797 -0.15117697447673797 -0.15117697447673797 -0.15117697447673797 -0.15117697447673797
-0.1336306209562122 0.3535533905932738 -0.15117697447673797 0.9286585574999623 -0.15117697447673797 -0.15117697447673797 -0.15117697447673797 -0.15117697447673797
-0.1336306209562122 0.3535533905932738 -0.15117697447673797 -0.15117697447673797 0.9286585574999623 -0.15117697447673797 -0.15117697447673797 -0.15117697447673797
-0.1336306209562122 0.3535533905932738 -0.15117697447673797 -0.15117697447673797 -0.15117697447673797 0.9286585574999623 -0.15117697447673797 -0.15117697447673797
-0.1336306209562122 0.3535533905932738 -0.15117697447673797 -0.15117697447673797 -0.15117697447673797 -0.15117697447673797 0.9286585574999622 -0.15117697447673797
-0.1336306209562122 0.3535533905932738 -0.15117697447673797 -0.15117697447673797 -0.15117697447673797 -0.15117697447673797 -0.15117697447673797 0.9286585574999622
没有虚构的组件。
要确认或否认结果的有效性,您总是可以编写一个小程序,将结果插入原始方程。简单的矩阵和向量乘法。然后你就会确定输出是否正确。或者,如果他们错了,他们离正确答案还有多远。
于 2021-01-06T04:47:14.090 回答