10
4

1 回答 1

2

据我所知,假设1是正确的,但假设2不是。

实对称矩阵产生仅实数的特征值和特征向量。

但是,对于给定的特征值,相关的特征向量不一定是唯一的。

此外,对于实际上不是那么大或包含不是非常小的数字的矩阵,舍入误差不应该那么重要。

为了比较,我通过 JavaScript 版本的 RG.F(Real General,来自 EISPACK 库)运行您的测试矩阵: 特征值和特征向量计算器

这是输出:

特征值:

   20
   12
   20
   20
   20
   20
   20
   20

特征向量:

 0.9354143466934854     0.35355339059327395     -0.021596710639534     -0.021596710639534     -0.021596710639534     -0.021596710639534     -0.021596710639533997     -0.021596710639533997
-0.1336306209562122     0.3535533905932738     -0.15117697447673797     -0.15117697447673797     -0.15117697447673797     -0.15117697447673797     -0.15117697447673797     -0.15117697447673797
-0.1336306209562122     0.3535533905932738     0.9286585574999623     -0.15117697447673797     -0.15117697447673797     -0.15117697447673797     -0.15117697447673797     -0.15117697447673797
-0.1336306209562122     0.3535533905932738     -0.15117697447673797     0.9286585574999623     -0.15117697447673797     -0.15117697447673797     -0.15117697447673797     -0.15117697447673797
-0.1336306209562122     0.3535533905932738     -0.15117697447673797     -0.15117697447673797     0.9286585574999623     -0.15117697447673797     -0.15117697447673797     -0.15117697447673797
-0.1336306209562122     0.3535533905932738     -0.15117697447673797     -0.15117697447673797     -0.15117697447673797     0.9286585574999623     -0.15117697447673797     -0.15117697447673797
-0.1336306209562122     0.3535533905932738     -0.15117697447673797     -0.15117697447673797     -0.15117697447673797     -0.15117697447673797     0.9286585574999622     -0.15117697447673797
-0.1336306209562122     0.3535533905932738     -0.15117697447673797     -0.15117697447673797     -0.15117697447673797     -0.15117697447673797     -0.15117697447673797     0.9286585574999622

没有虚构的组件。

要确认或否认结果的有效性,您总是可以编写一个小程序,将结果插入原始方程。简单的矩阵和向量乘法。然后你就会确定输出是否正确。或者,如果他们错了,他们离正确答案还有多远。

于 2021-01-06T04:47:14.090 回答