我有一个带有 ResidMat 和 Price 的数据框,我使用 scipy 来查找插值 CubicSpline。我使用了 CubicSpline 并应用来查找我的数据集上的所有数据。但它不是很快,因为在这种情况下没有更多的数据。我将有一百多个数据,而且速度很慢。您是否有这样做的想法,但可能使用矩阵?
谢谢,
def add_interpolated_price(row, generic_residmat):
from scipy.interpolate import CubicSpline
residmats = row[['ResidMat']].values
prices = row[['Price']].values
cs = CubicSpline(residmats, prices)
return float(cs(generic_residmat))
df = pd.DataFrame([[1,18,38,58,83,103,128,148,32.4,32.5,33.8,33.5,32.8,32.4,32.7],[2,17,37,57,82,102,127,147,31.2,31.5,32.7,33.2,32.5,32.9,33.3]],columns = ['index','ResidMat','ResidMat','ResidMat','ResidMat','ResidMat','ResidMat','ResidMat','Price','Price','Price','Price','Price','Price','Price'],index=['2010-06-25','2010-06-28'])
my_resimmat = 30
df['Generic_Value'] = df.apply(lambda row: add_interpolated_price(row, generic_residmat=my_resimmat), axis=1)