我需要构建一个函数来给出高斯过程的后验协方差。这个想法是使用 GPytorch 训练 GP,然后获取学习的超参数,并将它们传递给我的内核函数。(由于几个原因,我不能直接使用 GPyTorch)。
现在的问题是我无法重现预测。这里是我写的代码。我整天都在努力,但我找不到问题所在。你知道我做错了什么吗?
from gpytorch.mlls import ExactMarginalLogLikelihood
import numpy as np
import gpytorch
import torch
train_x1 = torch.linspace(0, 0.95, 50) + 0.05 * torch.rand(50)
train_y1 = torch.sin(train_x1 * (2 * np.pi)) + 0.2 * torch.randn_like(train_x1)
n_datapoints = train_x1.shape[0]
def kernel_rbf(x1, x2, c, l):
# my RBF function
if x1.shape is ():
x1 = np.atleast_2d(x1)
if x2.shape is ():
x2 = np.atleast_2d(x2)
return c * np.exp(- np.matmul((x1 - x2).T, (x1 - x2)) / (2 * l ** 2))
class ExactGPModel(gpytorch.models.ExactGP):
def __init__(self, train_x, train_y, likelihood):
super().__init__(train_x, train_y, likelihood)
lengthscale_prior = gpytorch.priors.GammaPrior(3.0, 6.0)
outputscale_prior = gpytorch.priors.GammaPrior(2.0, 0.15)
self.mean_module = gpytorch.means.ConstantMean()
self.covar_module = gpytorch.kernels.ScaleKernel(
gpytorch.kernels.RBFKernel(lengthscale_prior=lengthscale_prior),
outputscale_prior=outputscale_prior)
def forward(self, x):
mean_x = self.mean_module(x)
covar_x = self.covar_module(x)
return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)
likelihood = gpytorch.likelihoods.GaussianLikelihood()
model = ExactGPModel(train_x1, train_y1, likelihood)
# Find optimal model hyperparameters
model.train()
likelihood.train()
mll = ExactMarginalLogLikelihood(likelihood, model)
# Use the Adam optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.1) # Includes GaussianLikelihood parameters
training_iterations = 50
for i in range(training_iterations):
optimizer.zero_grad()
output = model(*model.train_inputs)
loss = -mll(output, model.train_targets)
loss.backward()
print('Iter %d/%d - Loss: %.3f' % (i + 1, training_iterations, loss.item()))
optimizer.step()
# Get the learned hyperparameters
outputscale = model.covar_module.outputscale.item()
lengthscale = model.covar_module.base_kernel.lengthscale.item()
noise = likelihood.noise_covar.noise.item()
train_x1 = train_x1.numpy()
train_y1 = train_y1.numpy()
# Get covariance train points
K = np.zeros((n_datapoints, n_datapoints))
for i in range(n_datapoints):
for j in range(n_datapoints):
K[i, j] = kernel_rbf(train_x1[i], train_x1[j], outputscale, lengthscale)
# Add noise
K += noise ** 2 * np.eye(n_datapoints)
# Get covariance train-test points
x_test = torch.rand(1, 1)
Ks = np.zeros((n_datapoints, 1))
for i in range(n_datapoints):
Ks[i] = kernel_rbf(train_x1[i], x_test.numpy(), outputscale, lengthscale)
# Get variance test points
Kss = kernel_rbf(x_test.numpy(), x_test.numpy(), outputscale, lengthscale)
L = np.linalg.cholesky(K)
v = np.linalg.solve(L, Ks)
var = Kss - np.matmul(v.T, v)
model.eval()
likelihood.eval()
with gpytorch.settings.fast_pred_var():
y_preds = likelihood(model(x_test))
print(f"Predicted variance with gpytorch:{y_preds.variance.item()}")
print(f"Predicted variance with my kernel:{var}")