我正在尝试使用 spark-shell运行此示例( https://hudi.apache.org/docs/quick-start-guide.html )。Apache Hudi 文档说“Hudi 与 Spark-2.x 版本一起工作”环境详细信息是:
平台:HDP 2.6.5.0-292 Spark 版本:2.3.0.2.6.5.279-2 Scala 版本:2.11.8
我正在使用以下 spark-shell 命令(注意 - spark-avro 版本不完全匹配,因为我找不到 Spark 2.3.2 的相应 spark-avro 依赖项)
spark-shell \
--packages org.apache.hudi:hudi-spark-bundle_2.11:0.6.0,org.apache.spark:spark-avro_2.11:2.4.4,org.apache.avro:avro:1.8.2 \
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer'
当我尝试写入数据时,出现以下错误:
scala> df.write.format("hudi").
| options(getQuickstartWriteConfigs).
| option(PRECOMBINE_FIELD_OPT_KEY, "ts").
| option(RECORDKEY_FIELD_OPT_KEY, "uuid").
| option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
| option(TABLE_NAME, tableName).
| mode(Overwrite).
| save(basePath)
20/12/27 06:21:15 WARN HoodieSparkSqlWriter$: hoodie table at file:/u/users/j0s0j7j/tmp/hudi_trips_cow already exists. Deleting existing data & overwriting with new data.
java.lang.NoSuchMethodError: org.apache.avro.Schema.createUnion([Lorg/apache/avro/Schema;)Lorg/apache/avro/Schema;
at org.apache.hudi.spark.org.apache.spark.sql.avro.SchemaConverters$.toAvroType(SchemaConverters.scala:185)
at org.apache.hudi.spark.org.apache.spark.sql.avro.SchemaConverters$$anonfun$5.apply(SchemaConverters.scala:176)
at org.apache.hudi.spark.org.apache.spark.sql.avro.SchemaConverters$$anonfun$5.apply(SchemaConverters.scala:174)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
at org.apache.spark.sql.types.StructType.foreach(StructType.scala:99)
at org.apache.hudi.spark.org.apache.spark.sql.avro.SchemaConverters$.toAvroType(SchemaConverters.scala:174)
at org.apache.hudi.AvroConversionUtils$.convertStructTypeToAvroSchema(AvroConversionUtils.scala:77)
at org.apache.hudi.HoodieSparkSqlWriter$.write(HoodieSparkSqlWriter.scala:132)
at org.apache.hudi.DefaultSource.createRelation(DefaultSource.scala:125)
at org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:46)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:70)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:68)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:86)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:80)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:80)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:654)
at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand$1.apply(DataFrameWriter.scala:654)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:654)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:273)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:267)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:225)
... 68 elided
对我来说,看起来正确的 avro 版本没有添加到类路径中或被拾取。任何人都可以建议解决方法吗?我被困在这很长一段时间了。