1
cv2.error: OpenCV(4.2.0) c:\projects\opencv
python\opencv\modules\imgproc\src\color.simd_helpers.hpp:92: error:
(-2:Unspecified error) in function '__cdecl cv::impl::`anonymous- 

命名空间'::CvtHelper<struct cv::impl::`匿名
命名空间'::Set<3,4,-1>,struct cv::impl::A0xe227985e::Set<1,-1,-1>, struct cv::impl::A0xe227985e::Set<0,2,5>,2>::CvtHelper(const class cv::_InputArray &,const class cv::_OutputArray &,int) > 输入通道数无效图片:> 'VScn::contains(scn)' > 其中 > 'scn' 为 1

img = cv2.cvtColor(images, cv2.COLOR_BGR2GRAY) 

这条线给了我错误

大家好,我是使用opencv的新手,现在我正在做图像分类项目

我的完整代码如下

from flask import Flask, request
from flask_restful import Api, Resource
import sys, os
from myconstants1 import path_logs, path_resources
from logConfig1 import setup_logger
import pathlib, pycountry, cv2, pickle, random, PIL, sys
from pathlib import Path 
import pathlib as pl
import numpy as np
from sklearn.model_selection import train_test_split
import pandas as pd
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from keras.utils.np_utils import to_categorical
from keras.layers import Flatten, Dropout
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.preprocessing.image import ImageDataGenerator
from PIL import Image, ImageOps
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

logger = setup_logger('/modelTrain', path_logs+'/modelTrain.log')

app = Flask(__name__)
api = Api(app)

path = sys.path
path = Path(__file__).parent

print("path2", path)

class HandleRequest5(Resource):
    y_validation = ""
    x_test = ""
    x_validation  = ""
    x_train = ""
         
    @classmethod
    def post(cls, json): 
               
        data = request.get_json()
        
        json = ({
            "Status": "failed",
            "message": "ALL fields are mandatory"
                })
                
        try:
            country_code = data["country_code"].upper()  
            batch_size = data["batch_size"]
            step_per_epoch_val = data["step_per_epoch_val"]
            epoch = data["epoch"]
        except KeyError:
            print(json)
            logger.debug(json)
            return(json)

        
        try:
            country = pycountry.countries.get(alpha_3 = data["country_code"].upper()).name.lower()
            print("country1", country)
            logger.debug(f'country1 : {country}')
            country = country.split()
            country =("_".join(country))
            print("country : ", country)
            logger.debug(f"country : {country}")
            alpha_2 = pycountry.countries.get(alpha_3 = data["country_code"].upper()).alpha_2
            print("alpha_2 : ", alpha_2)
            logger.debug(f"alpha_2 : {alpha_2}")
        except AttributeError:                
            jsonify1 = {
                        "status": "invalid",
                        "message" : "Invalid country_code"
                        }
            print("invalid country_code")
            
            logger.debug({
                        "status": "invalid",
                        "message" : "Invalid country_code"
                        })
            return jsonify1
    
    #   path = rf'{path}/{country}'  # folder with all class folders
        
        labelFile = rf'{path_resources}/{country}/labels.csv'         
        imageDimensions = (99, 200, 3)
        print("imageDimensions:", imageDimensions)
        testRatio = 0.2               # if 1000 images split will 200 for testing
        validationRatio = 0.2  
        print("line 91 is going to execute")
        cls.importImages( cls,testRatio , validationRatio , imageDimensions  ,country , labelFile)   
        
    def importImages(cls, testRatio, validationRatio, imageDimensions, country, labelFile):
        count = 0
        images = []
        classNo = []
        

        p = pl.Path(f'{path_resources}/{country}')                    
        mylist = [x for x in p.iterdir() if x.is_dir()]
        print("mylist1", mylist)
        print("total classs detected :", len(mylist))
        noofClasses = len(mylist)
        print("noofClasses:", noofClasses)
        print("importing classes...")
        
        for x in range(0, len(mylist)):

            myPicList = os.listdir(os.path.join(str(path_resources), str(country)+'//'+str(count))) 
            print("myPicList1:", myPicList)

            #for y in myPicList:
                #print(os.path.join(path, str(count), y))
                #curImg = cv2.imread((str(path_resources)+"/"+str(count)+"//"+y))
                
            for y in myPicList:
                print(os.path.join(path_resources, country, str(count)+y))

                curImg = cv2.imread(f"{path_resources}{country}/{str(count)}//{y}")                                                      
                images.append(curImg)
                classNo.append(count)
            print(count, end = " ")
            count+=1
        print(" ")
        images = np.array(images, dtype=np.uint8) 
        images = np.array(images)
        print("line 128")
        print(images.shape)
        #images = np.append(images,4)
        #images = images.append((Image.fromarray(images, dtype=np.float32).convert('RGB') / 255.))
#        image = Image.fromarray(images)
        #images = images.convert("RGB")
        classNo = np.array(classNo)        
        
        cls.splitData(cls,images, classNo, testRatio, validationRatio , imageDimensions, labelFile, noofClasses)
        return images, classNo, noofClasses
        
        # split data #
    def splitData(cls, images, classNo, testRatio, validationRatio , imageDimensions, labelFile, noofClasses):

        x_train, x_test, y_train, y_test = train_test_split(images, classNo, test_size = testRatio)
        x_train, x_validation, y_train, y_validation = train_test_split(x_train, y_train , test_size = validationRatio)
        
        # to check if no of images matches to number of labels for each data set
        print("data shapes...")
        print("train : ", end = "");print(x_train.shape, y_train.shape)
        print("validation :", end = ""); print(x_validation.shape, y_validation.shape) 
        print("test :", end = ""); print(x_test.shape, y_test.shape)        
        
        assert (x_train.shape[0] == y_train.shape[0]),  "the no of images is not equal to the no of labels in training set"
        assert (x_validation.shape[0] == y_validation.shape[0]), "the no of images is not equal to the no of labels in validation set"
        assert (x_test.shape[0] == y_test.shape[0]), "the no of images is not equal to the no of labels in test set"
        #print(x_train.shape)
        assert (x_train.shape[1:]  == (imageDimensions)),  "the dimension of training images are wrong"
        assert (x_validation.shape[1:] == (imageDimensions)), "the dimension of validation images are wrong"
        assert (x_test.shape[1:] == (imageDimensions)), "the dimension of test images are wrong"        
        
        data = pd.read_csv(labelFile) 
        
        cls.grayscale(cls, images, x_train, x_validation, x_test, y_train, y_validation, y_test )
        
        return images, x_train, x_validation, x_test, y_train, y_validation, y_test
        # preprocessing the image #

    def grayscale(cls,images, x_train, x_validation, x_test, y_train, y_validation, y_test):
        #images = ImageOps.grayscale(images)
        images = cv2.cvtColor(images, cv2.COLOR_BGR2GRAY)
        cls.equalize(images)
        return images
        
    def equalize(images):
        img = cv2.equalizeHist(images)       
        cls.preprocessing(img, grayscale, equalize)
        return img
        
    def preprocessing(cls, img, grayscale, equalize, x_train, x_validation, x_test, y_train, y_test, y_validation):
        img = grayscale(img)  #convert to grayscale
        img = equalize(img)   #standardize the lightining of an image
        img = img/255         # to normaize value between 0 and 1 instead of 0 to 255
        return img , x_train, x_validation, x_test, y_train, y_test, y_validation

        x_train = np.array(list(map(preprocessing, x_train)))  # to iterate and preprocess all images
        x_validation = np.array(list(map(preprocessing, x_validation)))
        x_test = np.array(list(map(preprocessing, x_test)))

        #cv2.imshow("grayscale images", x_train[random.randint(0, len(x_train)-1)]) #to check if training is done properly
               
        # add a depth of 1 #

        x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.shape[2], 1)
        x_validation = x_validation.reshape(x_validation .shape[0], x_validation .shape[1], x_validation .shape[2], 1)
        x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2], 1)


    def dataAugmentation(cls, x_train, y_train, noofClasses):
    # augmentation of images to make it more generic #

        dataGen = ImageDataGenerator(width_shift_range = 0.1, 
                             height_shift_range  = 0.1,
                             zoom_range = 0.2,
                             shear_range = 0.1,
                             rotation_range = 10)

        dataGen.fit(x_train)
        batches = dataGen.flow(x_train, y_train, batch_size = 20)
        x_batch, y_batch = next(batches)


# to show augmentated image sample 
#fig, axs = plt.subplots(24, 2, figsize = (20, 5))
#fig.tight_layout()
#print(axs)
#print("axs0:",axs[0])
#print("axs1:",axs[1])
#for i in range(10):
    #axs[i].imshow(x_batch[i].reshape(imageDimensions[0], imageDimensions[1]))
    #axs[0][1].imshow(x_batch[i].reshape(imageDimensions[0], imageDimensions[1]))
    #axs[i].axis("off")
    #axs[0][1].axis('off')
#plt.show()

        y_train = to_categorical(y_train, noofClasses) 
        y_validation = to_categorical(y_validation, noofClasses) 
        y_test = to_categorical(y_test, noofClasses) 
        cls.splitData(y_validations)        
        cls.myModel(noofClasses)
# convolution neural network #

    def myModel(cls, noofClasses, country):
        no_of_filters = 60 
        size_of_filter = (5,5)  #this is kernal that move around the image to get the features 
    
        size_of_filter2 = (3,3) 
        size_of_pool = (2,2)
        no_of_nodes = 200
    
        model = Sequential()
        model.add(Conv2D(no_of_filters, size_of_filter, input_shape = (imageDimensions[0], imageDimensions[1], 1), activation = "relu"))
        model.add(Conv2D(no_of_filters, size_of_filter, activation = "relu"))
        model.add(MaxPooling2D(pool_size = size_of_pool))
    
        model.add(Conv2D(no_of_filters//2, size_of_filter2, activation = "relu"))
        model.add(Conv2D(no_of_filters//2, size_of_filter2, activation = "relu"))
        model.add(Dropout(0.5))
    
        model.add(Flatten())
        model.add(Dense(no_of_nodes, activation = "relu"))
        model.add(Dropout(0.5))
    
    
  #  model.add(Flatten())
        model.add(Dense(noofClasses, activation = "softmax"))
    
    # compile model #
        model.compile(Adam(lr = 0.001), loss = "categorical_crossentropy",  metrics = ["accuracy"])
        return model    
    
    # train #
        model = myModel()

        print(model.summary())
        history = model.fit_generator  (dataGen.flow(x_train, y_train, batch_size = batch_size_val), steps_per_epoch = steps_per_epoch_val, epochs = epoch_val, validation_data = (x_train, y_train))  
        
# plot #

        plt.figure(1)
        plt.plot(history.history["loss"])
        plt.plot(history.history["val_loss"])
        plt.legend(["training", "validation"])

        plt.title("loss")
        plt.xlabel("epoch")
        plt.figure(2)
        plt.plot(history.history["accuracy"])
        plt.plot(history.history["val_accuracy"])

        plt.legend(["training", "accuracy"])
        plt.title("accuracy")
        plt.xlabel("epoch")
        #plt.show()


        score = model.evaluate(x_test, y_test, verbose = 0)
        print("test score: ", score[0])
        print("test accuracy: ", score[1])

    ###############################################################
    #store the model as pickle object #
    #save_path = rf'{path}/{country}'
        pickle_out = open(rf"{path_resources}/{country}.p", "wb")
    #model = model.save(rf'{country}_{epoch_val}.h5')

        pickle.dump(model, pickle_out)
        pickle_out.close()
        print(rf"{country}_model saved...")
        cv2.waitKey(0)        

        
api.add_resource(HandleRequest5, '/modelTrain')
if __name__ == ' __main__ ':
    app.run(debug = False)
4

1 回答 1

2

正如评论中所建议的,您有两种方法可以做到这一点。您可以遍历每个图像并运行该cv2.cvtColor方法,也可以使用公式直接从 RGB 转换为灰度。OpenCV 使用 SMPTE Rec。601转换公式,即:

Y = 0.299*R + 0.587*G + 0.114*B

让我们介绍这两种方法。

方法#1

创建一个新的 3D 数组,336 x 99 x 200然后迭代 4D 数组中的每个图像,转换然后将其设置到输出中的相应位置。

images_gray = np.zeros(images.shape[:-1], dtype=images.dtype)
for i, img in enumerate(images):
    images_gray[i] = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

方法#2 - 直接使用转换公式

我认为这种方法是最有效的,主要是因为我建议你做的是计算这个矢量化:

coeffs = np.array([0.114, 0.587, 0.229])
images_gray = (images.astype(np.float) * coeffs).sum(axis=-1)
images_gray = images_gray.astype(images.dtype)

有两点需要注意:第一,由于 OpenCV 读取 BGR 格式的图像,每个 RGB 值的权重都会反转。第二个是我暂时将图像转换为浮点精度,以便由于浮点系数而保持尽可能高的精度。然后,我们将结果输出转换回与输入图像相同的精度。最后,上面的代码将对每个图像的每个像素做些什么,我们将每个颜色像素乘以转换公式中看到的权重,然后对这些值求和。上面的代码将以向量化的方式完成,没有循环。

关于图像分类的小提示

我在上面的评论线程中注意到您正在使用它来执行图像分类。如果您打算使用深度学习框架,通常需要维护一个单例维度来反映通道维度,以便您可以在网络的前向传播中正确地进行广播。换句话说,你必须有一个336 x 99 x 200 x 1数组。对于方法 #1,只需将输出数组声明为具有四个维度,但在循环中,您需要使用np.newaxis.

images_gray = np.zeros(images.shape, dtype=images.dtype)
for i, img in enumerate(images):
    images_gray[i] = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[..., np.newaxis]

对于方法 #2,您可以keepdims=Truesum调用中添加:

coeffs = np.array([0.114, 0.587, 0.229])
images_gray = (images.astype(np.float) * coeffs).sum(axis=-1, keepdims=True)
images_gray = images_gray.astype(images.dtype)
于 2020-12-21T08:20:55.423 回答