0

运行这个系列

X = number_of_logons_all.values
split = round(len(X) / 2)
X1, X2 = X[0:split], X[split:]
mean1, mean2 = X1.mean(), X2.mean()
var1, var2 = X1.var(), X2.var()
print('mean1=%f, mean2=%f' % (mean1, mean2))
print('variance1=%f, variance2=%f' % (var1, var2))

我得到:

mean1=60785.792548, mean2=61291.266868
variance1=7483553053.651829, variance2=7603208729.348722

但我想要在我的 PyCharm 控制台中这样的东西(从另一个结果中提取):

>>> -103 days +04:37:13.802435724...

试图将 np.array 放在 pd.Dataframe() 中,以通过添加来获得预期值

.apply(pd.to_timedelta, unit='s')

...这不起作用,所以我尝试了

new = pd.DataFrame([mean1]).to_numpy(dtype='timedelta64[ns]')

...并且(仍然)得到这样的东西:

>>>> [[63394]]

有谁可以帮助我从上面的均值计算转换为易于理解的日期时间结果?

谢谢,提前为您提供支持。

4

1 回答 1

0

您可以使用f-strings:

mean1, mean2 = 60785.792548, 61291.266868
variance1, variance2=7603208729.348722,7483553053.651829

print(f'mean1={pd.Timedelta(mean1, unit="s")}, mean2={pd.Timedelta(mean2, unit="s")}')
print(f'variance1={pd.Timedelta(variance1, unit="s")}, variance2={pd.Timedelta(variance2, unit="s")}')
mean1=0 days 16:53:05.792548, mean2=0 days 17:01:31.266868
variance1=88000 days 02:25:29.348722458, variance2=86615 days 04:44:13.651828766
于 2020-12-08T11:12:37.277 回答