0

我已经达到了这个双线性插值代码(在此处添加),但我想将此代码改进为 3D,这意味着将其更新为使用 RGB 图像(3D,而不仅仅是 2D)。

如果您有任何建议,我很想知道。

这是一维线性插值:

import math

def linear1D_resize(in_array, size):
    """
    `in_array` is the input array.
    `size` is the desired size.
    """
    ratio = (len(in_array) - 1) / (size - 1)
    out_array = []

    for i in range(size):
        low = math.floor(ratio * i)
        high = math.ceil(ratio * i)
        weight = ratio * i - low

        a = in_array[low]
        b = in_array[high]

        out_array.append(a * (1 - weight) + b * weight)

    return out_array

这对于 2D:

import math
def bilinear_resize(image, height, width):
    """
    `image` is a 2-D numpy array
    `height` and `width` are the desired spatial dimension of the new 2-D array.
    """
    img_height, img_width = image.shape[:2]

    resized = np.empty([height, width])

    x_ratio = float(img_width - 1) / (width - 1) if width > 1 else 0
    y_ratio = float(img_height - 1) / (height - 1) if height > 1 else 0

    for i in range(height):
        for j in range(width):
            x_l, y_l = math.floor(x_ratio * j), math.floor(y_ratio * i)
            x_h, y_h = math.ceil(x_ratio * j), math.ceil(y_ratio * i)

            x_weight = (x_ratio * j) - x_l
            y_weight = (y_ratio * i) - y_l

            a = image[y_l, x_l]
            b = image[y_l, x_h]
            c = image[y_h, x_l]
            d = image[y_h, x_h]

            pixel = a * (1 - x_weight) * (1 - y_weight) + b * x_weight * (1 - y_weight) + c * y_weight * (1 - x_weight) + d * x_weight * y_weight
            resized[i][j] = pixel      # pixel is the scalar with the value comptued by the interpolation

    return resized
4

1 回答 1

0

查看一些 scipy ndimage 插值函数。他们会做你正在寻找的东西并“使用 numpy”。

它们也非常实用、快速并且已经过多次测试。

理查德

于 2020-11-10T17:30:09.537 回答