2

我正在尝试使用使用crosstalk::filter_select(). 但是,当我选择一个组时,热图似乎是空的,我不知道为什么。我已经包含了生成热图的代码、下面的一些图像以更好地演示问题,以及重现结果的数据。

运行代码以生成热图:

library(tidyverse)
library(crosstalk)
library(plotly)

# The data frame 'df' can be retrieved from the code below, if needed 
interactive <- SharedData$new(df, ~comb_name, group = "Combination")

g <- interactive %>%
  ggplot(aes(x = day,
           y = hour,
           fill = diff)) +
  geom_tile(colour = "white",
            size = 0.1) +
  scale_fill_viridis(name= "Temperature", option = "B") +
  facet_wrap(~ month_abb) +
  scale_x_continuous(breaks =c(1,10,20,31)) +
  scale_y_continuous(breaks = 0:23) +
  theme_minimal() +
  theme(legend.position = "bottom")

filter <- bscols(
  filter_select(id = "id",
                label = "Select Sites",
                sharedData = interactive,
                group = ~comb_name,
                multiple = FALSE),
  ggplotly(g,
           tooltip = c("text"),
           dynamicTicks = TRUE) %>%
    config(displayModeBar = F),
  widths = c(10, 10)
)

bscols(filter)

默认图像显示所有组的热图:

在选择输入中选择一个组时,它会显示一个空的热图

我在下面包含了一个数据框的小样本。

structure(list(date = structure(c(18231, 18231, 18231, 18231, 
18231, 18231, 18231, 18231, 18231, 18231, 18231, 18231, 18231, 
18231, 18231, 18231, 18231, 18231, 18231, 18231, 18231, 18231, 
18231, 18231, 18231, 18231, 18231, 18231, 18231, 18231, 18262, 
18262, 18262, 18262, 18262, 18262, 18262, 18262, 18262, 18262, 
18262, 18262, 18262, 18262, 18262, 18262, 18262, 18262, 18262, 
18262, 18262, 18262, 18262, 18262, 18262, 18262, 18262, 18262, 
18262, 18262, 18293, 18293, 18293, 18293, 18293, 18293, 18293, 
18293, 18293, 18293, 18293, 18293, 18293, 18293, 18293, 18293, 
18293, 18293, 18322, 18322, 18322, 18322, 18322, 18322, 18322, 
18322, 18322, 18322, 18322, 18322, 18322, 18322, 18322, 18322, 
18322, 18322, 18322, 18322, 18322, 18322, 18322, 18322, 18322, 
18322, 18322, 18322, 18322, 18322, 18353, 18353, 18353, 18353, 
18353, 18353, 18353, 18353, 18353, 18353, 18353, 18353, 18353, 
18353, 18353, 18353, 18353, 18353, 18353, 18353, 18353, 18353, 
18353, 18353, 18353, 18353, 18353, 18353, 18353, 18353, 18414, 
18414, 18414, 18414, 18414, 18414, 18414, 18414, 18414, 18414, 
18414, 18414, 18414, 18414, 18414, 18414, 18414, 18414, 18414, 
18414, 18414, 18414, 18414, 18414, 18414, 18414, 18414, 18414, 
18414, 18414, 18444, 18444, 18444, 18444, 18444, 18444, 18444, 
18444, 18444, 18444, 18444, 18444, 18444, 18444, 18444, 18444, 
18444, 18444, 18475, 18475, 18475, 18475, 18475, 18475, 18475, 
18475, 18475, 18475, 18475, 18475, 18475, 18475, 18475, 18475, 
18475, 18475, 18475, 18475, 18475, 18475, 18475, 18475, 18475, 
18475, 18475, 18475, 18475, 18475, 18506, 18506, 18506, 18506, 
18506, 18506, 18506, 18506, 18506, 18506, 18506, 18506, 18506, 
18506, 18506, 18506, 18506, 18506, 18383, 18383, 18383), class = "Date"), 
    hour = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 
    3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 
    2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 
    2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 2L, 3L
    ), comb_name = structure(c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 
    9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 
    3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 
    7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
    1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 2L, 3L, 4L, 8L, 
    9L, 10L, 2L, 3L, 4L, 8L, 9L, 10L, 2L, 3L, 4L, 8L, 9L, 10L, 
    1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 
    5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 
    9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 
    3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 
    7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
    1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 
    5L, 6L, 7L, 8L, 9L, 10L, 2L, 3L, 4L, 8L, 9L, 10L, 2L, 3L, 
    4L, 8L, 9L, 10L, 2L, 3L, 4L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 
    5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 
    9L, 10L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1L, 2L, 
    4L, 5L, 7L, 9L, 1L, 2L, 4L, 5L, 7L, 9L, 1L, 2L, 4L, 5L, 7L, 
    9L, 9L, 9L, 9L), .Label = c("arc1045 - arc1046", "arc1045 - arc1047", 
    "arc1045 - arc1048", "arc1045 - arc1050", "arc1046 - arc1047", 
    "arc1046 - arc1048", "arc1046 - arc1050", "arc1047 - arc1048", 
    "arc1047 - arc1050", "arc1048 - arc1050"), class = "factor"), 
    diff = c(1.58, 1.79, 1.8, 1.78, 0.2, 0.21, 0.2, 0.01, 0, 
    -0.01, 1.03, 1.21, 1.28, 1.29, 0.18, 0.25, 0.26, 0.07, 0.08, 
    0.01, 0.84, 1.02, 0.99, 0.99, 0.18, 0.15, 0.15, -0.02, -0.03, 
    0, 1.48, 1.69, 1.5, 1.32, 0.22, 0.03, -0.15, -0.19, -0.37, 
    -0.18, 1.17, 1.5, 1.17, 0.98, 0.33, 0, -0.19, -0.33, -0.52, 
    -0.19, 1.01, 1.25, 1, 0.85, 0.24, -0.02, -0.16, -0.26, -0.4, 
    -0.14, 0.65, 0.65, 0.73, 0, 0.08, 0.08, 0.67, 0.54, 0.56, 
    -0.14, -0.11, 0.03, 0.82, 0.62, 0.59, -0.2, -0.24, -0.04, 
    1.31, 1.35, 1.24, 0.94, 0.04, -0.07, -0.37, -0.11, -0.41, 
    -0.3, 1.54, 1.52, 1.42, 1.28, -0.02, -0.12, -0.26, -0.11, 
    -0.24, -0.14, 1.55, 1.5, 1.44, 1.32, -0.05, -0.11, -0.23, 
    -0.05, -0.18, -0.12, 1.45, 1.67, 1.52, 1.17, 0.22, 0.07, 
    -0.28, -0.15, -0.49, -0.35, 1.29, 1.36, 1.19, 0.85, 0.07, 
    -0.1, -0.44, -0.17, -0.51, -0.34, 1.41, 1.7, 1.18, 0.97, 
    0.29, -0.23, -0.44, -0.52, -0.73, -0.21, 0.09, 0.18, 0.26, 
    0.21, 0.09, 0.17, 0.12, 0.08, 0.03, -0.05, 0.04, 0.12, 0.21, 
    0.17, 0.08, 0.17, 0.12, 0.09, 0.04, -0.05, -0.03, -0.1, 0.13, 
    0.1, -0.07, 0.16, 0.13, 0.23, 0.19, -0.03, 0.13, 1.19, 0.71, 
    1.06, 0.58, -0.48, 0.06, 0.76, 0.39, 0.7, 0.34, -0.37, 0.08, 
    0.64, 0.25, 0.56, 0.18, -0.38, 0.49, 0.44, 0.76, 0.6, -0.05, 
    0.27, 0.11, 0.32, 0.16, -0.16, 1.1, 0.69, 1.25, 0.94, -0.41, 
    0.15, -0.16, 0.56, 0.25, -0.31, 0.59, 0.21, 0.84, 0.7, -0.38, 
    0.25, 0.1, 0.63, 0.48, -0.15, 0.75, 0.81, 0.95, 0.06, 0.21, 
    0.15, 0.76, 0.82, 0.87, 0.06, 0.11, 0.04, 1.02, 1.03, 1.16, 
    0.01, 0.14, 0.13, 0.03, 0.02, -0.03), day = c(1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), month_abb = structure(c(12L, 
    12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 
    12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 
    12L, 12L, 12L, 12L, 12L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 6L, 6L, 6L, 6L, 6L, 
    6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
    6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 
    7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 
    8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
    8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 
    9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
    9L, 5L, 5L, 5L), .Label = c("Jan", "Feb", "Mar", "Apr", "May", 
    "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"), class = c("ordered", 
    "factor"))), row.names = c(NA, -237L), class = c("tbl_df", 
"tbl", "data.frame"))
#>           date hour         comb_name  diff day month_abb
#> 1   2019-12-01    1 arc1045 - arc1046  1.58   1       Dec
#> 2   2019-12-01    1 arc1045 - arc1047  1.79   1       Dec
#> 3   2019-12-01    1 arc1045 - arc1048  1.80   1       Dec
#> 4   2019-12-01    1 arc1045 - arc1050  1.78   1       Dec
#> 5   2019-12-01    1 arc1046 - arc1047  0.20   1       Dec
#> 6   2019-12-01    1 arc1046 - arc1048  0.21   1       Dec
#> 7   2019-12-01    1 arc1046 - arc1050  0.20   1       Dec
#> 8   2019-12-01    1 arc1047 - arc1048  0.01   1       Dec
#> 9   2019-12-01    1 arc1047 - arc1050  0.00   1       Dec
#> 10  2019-12-01    1 arc1048 - arc1050 -0.01   1       Dec
#> 11  2019-12-01    2 arc1045 - arc1046  1.03   1       Dec
#> 12  2019-12-01    2 arc1045 - arc1047  1.21   1       Dec
#> 13  2019-12-01    2 arc1045 - arc1048  1.28   1       Dec
#> 14  2019-12-01    2 arc1045 - arc1050  1.29   1       Dec
#> 15  2019-12-01    2 arc1046 - arc1047  0.18   1       Dec
#> 16  2019-12-01    2 arc1046 - arc1048  0.25   1       Dec
#> 17  2019-12-01    2 arc1046 - arc1050  0.26   1       Dec
#> 18  2019-12-01    2 arc1047 - arc1048  0.07   1       Dec
#> 19  2019-12-01    2 arc1047 - arc1050  0.08   1       Dec
#> 20  2019-12-01    2 arc1048 - arc1050  0.01   1       Dec
#> 21  2019-12-01    3 arc1045 - arc1046  0.84   1       Dec
#> 22  2019-12-01    3 arc1045 - arc1047  1.02   1       Dec
#> 23  2019-12-01    3 arc1045 - arc1048  0.99   1       Dec
#> 24  2019-12-01    3 arc1045 - arc1050  0.99   1       Dec
#> 25  2019-12-01    3 arc1046 - arc1047  0.18   1       Dec
#> 26  2019-12-01    3 arc1046 - arc1048  0.15   1       Dec
#> 27  2019-12-01    3 arc1046 - arc1050  0.15   1       Dec
#> 28  2019-12-01    3 arc1047 - arc1048 -0.02   1       Dec
#> 29  2019-12-01    3 arc1047 - arc1050 -0.03   1       Dec
#> 30  2019-12-01    3 arc1048 - arc1050  0.00   1       Dec
#> 31  2020-01-01    1 arc1045 - arc1046  1.48   1       Jan
#> 32  2020-01-01    1 arc1045 - arc1047  1.69   1       Jan
#> 33  2020-01-01    1 arc1045 - arc1048  1.50   1       Jan
#> 34  2020-01-01    1 arc1045 - arc1050  1.32   1       Jan
#> 35  2020-01-01    1 arc1046 - arc1047  0.22   1       Jan
#> 36  2020-01-01    1 arc1046 - arc1048  0.03   1       Jan
#> 37  2020-01-01    1 arc1046 - arc1050 -0.15   1       Jan
#> 38  2020-01-01    1 arc1047 - arc1048 -0.19   1       Jan
#> 39  2020-01-01    1 arc1047 - arc1050 -0.37   1       Jan
#> 40  2020-01-01    1 arc1048 - arc1050 -0.18   1       Jan
#> 41  2020-01-01    2 arc1045 - arc1046  1.17   1       Jan
#> 42  2020-01-01    2 arc1045 - arc1047  1.50   1       Jan
#> 43  2020-01-01    2 arc1045 - arc1048  1.17   1       Jan
#> 44  2020-01-01    2 arc1045 - arc1050  0.98   1       Jan
#> 45  2020-01-01    2 arc1046 - arc1047  0.33   1       Jan
#> 46  2020-01-01    2 arc1046 - arc1048  0.00   1       Jan
#> 47  2020-01-01    2 arc1046 - arc1050 -0.19   1       Jan
#> 48  2020-01-01    2 arc1047 - arc1048 -0.33   1       Jan
#> 49  2020-01-01    2 arc1047 - arc1050 -0.52   1       Jan
#> 50  2020-01-01    2 arc1048 - arc1050 -0.19   1       Jan
#> 51  2020-01-01    3 arc1045 - arc1046  1.01   1       Jan
#> 52  2020-01-01    3 arc1045 - arc1047  1.25   1       Jan
#> 53  2020-01-01    3 arc1045 - arc1048  1.00   1       Jan
#> 54  2020-01-01    3 arc1045 - arc1050  0.85   1       Jan
#> 55  2020-01-01    3 arc1046 - arc1047  0.24   1       Jan
#> 56  2020-01-01    3 arc1046 - arc1048 -0.02   1       Jan
#> 57  2020-01-01    3 arc1046 - arc1050 -0.16   1       Jan
#> 58  2020-01-01    3 arc1047 - arc1048 -0.26   1       Jan
#> 59  2020-01-01    3 arc1047 - arc1050 -0.40   1       Jan
#> 60  2020-01-01    3 arc1048 - arc1050 -0.14   1       Jan
#> 61  2020-02-01    1 arc1045 - arc1047  0.65   1       Feb
#> 62  2020-02-01    1 arc1045 - arc1048  0.65   1       Feb
#> 63  2020-02-01    1 arc1045 - arc1050  0.73   1       Feb
#> 64  2020-02-01    1 arc1047 - arc1048  0.00   1       Feb
#> 65  2020-02-01    1 arc1047 - arc1050  0.08   1       Feb
#> 66  2020-02-01    1 arc1048 - arc1050  0.08   1       Feb
#> 67  2020-02-01    2 arc1045 - arc1047  0.67   1       Feb
#> 68  2020-02-01    2 arc1045 - arc1048  0.54   1       Feb
#> 69  2020-02-01    2 arc1045 - arc1050  0.56   1       Feb
#> 70  2020-02-01    2 arc1047 - arc1048 -0.14   1       Feb
#> 71  2020-02-01    2 arc1047 - arc1050 -0.11   1       Feb
#> 72  2020-02-01    2 arc1048 - arc1050  0.03   1       Feb
#> 73  2020-02-01    3 arc1045 - arc1047  0.82   1       Feb
#> 74  2020-02-01    3 arc1045 - arc1048  0.62   1       Feb
#> 75  2020-02-01    3 arc1045 - arc1050  0.59   1       Feb
#> 76  2020-02-01    3 arc1047 - arc1048 -0.20   1       Feb
#> 77  2020-02-01    3 arc1047 - arc1050 -0.24   1       Feb
#> 78  2020-02-01    3 arc1048 - arc1050 -0.04   1       Feb
#> 79  2020-03-01    1 arc1045 - arc1046  1.31   1       Mar
#> 80  2020-03-01    1 arc1045 - arc1047  1.35   1       Mar
#> 81  2020-03-01    1 arc1045 - arc1048  1.24   1       Mar
#> 82  2020-03-01    1 arc1045 - arc1050  0.94   1       Mar
#> 83  2020-03-01    1 arc1046 - arc1047  0.04   1       Mar
#> 84  2020-03-01    1 arc1046 - arc1048 -0.07   1       Mar
#> 85  2020-03-01    1 arc1046 - arc1050 -0.37   1       Mar
#> 86  2020-03-01    1 arc1047 - arc1048 -0.11   1       Mar
#> 87  2020-03-01    1 arc1047 - arc1050 -0.41   1       Mar
#> 88  2020-03-01    1 arc1048 - arc1050 -0.30   1       Mar
#> 89  2020-03-01    2 arc1045 - arc1046  1.54   1       Mar
#> 90  2020-03-01    2 arc1045 - arc1047  1.52   1       Mar
#> 91  2020-03-01    2 arc1045 - arc1048  1.42   1       Mar
#> 92  2020-03-01    2 arc1045 - arc1050  1.28   1       Mar
#> 93  2020-03-01    2 arc1046 - arc1047 -0.02   1       Mar
#> 94  2020-03-01    2 arc1046 - arc1048 -0.12   1       Mar
#> 95  2020-03-01    2 arc1046 - arc1050 -0.26   1       Mar
#> 96  2020-03-01    2 arc1047 - arc1048 -0.11   1       Mar
#> 97  2020-03-01    2 arc1047 - arc1050 -0.24   1       Mar
#> 98  2020-03-01    2 arc1048 - arc1050 -0.14   1       Mar
#> 99  2020-03-01    3 arc1045 - arc1046  1.55   1       Mar
#> 100 2020-03-01    3 arc1045 - arc1047  1.50   1       Mar
#> 101 2020-03-01    3 arc1045 - arc1048  1.44   1       Mar
#> 102 2020-03-01    3 arc1045 - arc1050  1.32   1       Mar
#> 103 2020-03-01    3 arc1046 - arc1047 -0.05   1       Mar
#> 104 2020-03-01    3 arc1046 - arc1048 -0.11   1       Mar
#> 105 2020-03-01    3 arc1046 - arc1050 -0.23   1       Mar
#> 106 2020-03-01    3 arc1047 - arc1048 -0.05   1       Mar
#> 107 2020-03-01    3 arc1047 - arc1050 -0.18   1       Mar
#> 108 2020-03-01    3 arc1048 - arc1050 -0.12   1       Mar
#> 109 2020-04-01    1 arc1045 - arc1046  1.45   1       Apr
#> 110 2020-04-01    1 arc1045 - arc1047  1.67   1       Apr
#> 111 2020-04-01    1 arc1045 - arc1048  1.52   1       Apr
#> 112 2020-04-01    1 arc1045 - arc1050  1.17   1       Apr
#> 113 2020-04-01    1 arc1046 - arc1047  0.22   1       Apr
#> 114 2020-04-01    1 arc1046 - arc1048  0.07   1       Apr
#> 115 2020-04-01    1 arc1046 - arc1050 -0.28   1       Apr
#> 116 2020-04-01    1 arc1047 - arc1048 -0.15   1       Apr
#> 117 2020-04-01    1 arc1047 - arc1050 -0.49   1       Apr
#> 118 2020-04-01    1 arc1048 - arc1050 -0.35   1       Apr
#> 119 2020-04-01    2 arc1045 - arc1046  1.29   1       Apr
#> 120 2020-04-01    2 arc1045 - arc1047  1.36   1       Apr
#> 121 2020-04-01    2 arc1045 - arc1048  1.19   1       Apr
#> 122 2020-04-01    2 arc1045 - arc1050  0.85   1       Apr
#> 123 2020-04-01    2 arc1046 - arc1047  0.07   1       Apr
#> 124 2020-04-01    2 arc1046 - arc1048 -0.10   1       Apr
#> 125 2020-04-01    2 arc1046 - arc1050 -0.44   1       Apr
#> 126 2020-04-01    2 arc1047 - arc1048 -0.17   1       Apr
#> 127 2020-04-01    2 arc1047 - arc1050 -0.51   1       Apr
#> 128 2020-04-01    2 arc1048 - arc1050 -0.34   1       Apr
#> 129 2020-04-01    3 arc1045 - arc1046  1.41   1       Apr
#> 130 2020-04-01    3 arc1045 - arc1047  1.70   1       Apr
#> 131 2020-04-01    3 arc1045 - arc1048  1.18   1       Apr
#> 132 2020-04-01    3 arc1045 - arc1050  0.97   1       Apr
#> 133 2020-04-01    3 arc1046 - arc1047  0.29   1       Apr
#> 134 2020-04-01    3 arc1046 - arc1048 -0.23   1       Apr
#> 135 2020-04-01    3 arc1046 - arc1050 -0.44   1       Apr
#> 136 2020-04-01    3 arc1047 - arc1048 -0.52   1       Apr
#> 137 2020-04-01    3 arc1047 - arc1050 -0.73   1       Apr
#> 138 2020-04-01    3 arc1048 - arc1050 -0.21   1       Apr
#> 139 2020-06-01    1 arc1045 - arc1046  0.09   1       Jun
#> 140 2020-06-01    1 arc1045 - arc1047  0.18   1       Jun
#> 141 2020-06-01    1 arc1045 - arc1048  0.26   1       Jun
#> 142 2020-06-01    1 arc1045 - arc1050  0.21   1       Jun
#> 143 2020-06-01    1 arc1046 - arc1047  0.09   1       Jun
#> 144 2020-06-01    1 arc1046 - arc1048  0.17   1       Jun
#> 145 2020-06-01    1 arc1046 - arc1050  0.12   1       Jun
#> 146 2020-06-01    1 arc1047 - arc1048  0.08   1       Jun
#> 147 2020-06-01    1 arc1047 - arc1050  0.03   1       Jun
#> 148 2020-06-01    1 arc1048 - arc1050 -0.05   1       Jun
#> 149 2020-06-01    2 arc1045 - arc1046  0.04   1       Jun
#> 150 2020-06-01    2 arc1045 - arc1047  0.12   1       Jun
#> 151 2020-06-01    2 arc1045 - arc1048  0.21   1       Jun
#> 152 2020-06-01    2 arc1045 - arc1050  0.17   1       Jun
#> 153 2020-06-01    2 arc1046 - arc1047  0.08   1       Jun
#> 154 2020-06-01    2 arc1046 - arc1048  0.17   1       Jun
#> 155 2020-06-01    2 arc1046 - arc1050  0.12   1       Jun
#> 156 2020-06-01    2 arc1047 - arc1048  0.09   1       Jun
#> 157 2020-06-01    2 arc1047 - arc1050  0.04   1       Jun
#> 158 2020-06-01    2 arc1048 - arc1050 -0.05   1       Jun
#> 159 2020-06-01    3 arc1045 - arc1046 -0.03   1       Jun
#> 160 2020-06-01    3 arc1045 - arc1047 -0.10   1       Jun
#> 161 2020-06-01    3 arc1045 - arc1048  0.13   1       Jun
#> 162 2020-06-01    3 arc1045 - arc1050  0.10   1       Jun
#> 163 2020-06-01    3 arc1046 - arc1047 -0.07   1       Jun
#> 164 2020-06-01    3 arc1046 - arc1048  0.16   1       Jun
#> 165 2020-06-01    3 arc1046 - arc1050  0.13   1       Jun
#> 166 2020-06-01    3 arc1047 - arc1048  0.23   1       Jun
#> 167 2020-06-01    3 arc1047 - arc1050  0.19   1       Jun
#> 168 2020-06-01    3 arc1048 - arc1050 -0.03   1       Jun
#> 169 2020-07-01    1 arc1045 - arc1047  0.13   1       Jul
#> 170 2020-07-01    1 arc1045 - arc1048  1.19   1       Jul
#> 171 2020-07-01    1 arc1045 - arc1050  0.71   1       Jul
#> 172 2020-07-01    1 arc1047 - arc1048  1.06   1       Jul
#> 173 2020-07-01    1 arc1047 - arc1050  0.58   1       Jul
#> 174 2020-07-01    1 arc1048 - arc1050 -0.48   1       Jul
#> 175 2020-07-01    2 arc1045 - arc1047  0.06   1       Jul
#> 176 2020-07-01    2 arc1045 - arc1048  0.76   1       Jul
#> 177 2020-07-01    2 arc1045 - arc1050  0.39   1       Jul
#> 178 2020-07-01    2 arc1047 - arc1048  0.70   1       Jul
#> 179 2020-07-01    2 arc1047 - arc1050  0.34   1       Jul
#> 180 2020-07-01    2 arc1048 - arc1050 -0.37   1       Jul
#> 181 2020-07-01    3 arc1045 - arc1047  0.08   1       Jul
#> 182 2020-07-01    3 arc1045 - arc1048  0.64   1       Jul
#> 183 2020-07-01    3 arc1045 - arc1050  0.25   1       Jul
#> 184 2020-07-01    3 arc1047 - arc1048  0.56   1       Jul
#> 185 2020-07-01    3 arc1047 - arc1050  0.18   1       Jul
#> 186 2020-07-01    3 arc1048 - arc1050 -0.38   1       Jul
#> 187 2020-08-01    1 arc1045 - arc1046  0.49   1       Aug
#> 188 2020-08-01    1 arc1045 - arc1047  0.44   1       Aug
#> 189 2020-08-01    1 arc1045 - arc1048  0.76   1       Aug
#> 190 2020-08-01    1 arc1045 - arc1050  0.60   1       Aug
#> 191 2020-08-01    1 arc1046 - arc1047 -0.05   1       Aug
#> 192 2020-08-01    1 arc1046 - arc1048  0.27   1       Aug
#> 193 2020-08-01    1 arc1046 - arc1050  0.11   1       Aug
#> 194 2020-08-01    1 arc1047 - arc1048  0.32   1       Aug
#> 195 2020-08-01    1 arc1047 - arc1050  0.16   1       Aug
#> 196 2020-08-01    1 arc1048 - arc1050 -0.16   1       Aug
#> 197 2020-08-01    2 arc1045 - arc1046  1.10   1       Aug
#> 198 2020-08-01    2 arc1045 - arc1047  0.69   1       Aug
#> 199 2020-08-01    2 arc1045 - arc1048  1.25   1       Aug
#> 200 2020-08-01    2 arc1045 - arc1050  0.94   1       Aug
#> 201 2020-08-01    2 arc1046 - arc1047 -0.41   1       Aug
#> 202 2020-08-01    2 arc1046 - arc1048  0.15   1       Aug
#> 203 2020-08-01    2 arc1046 - arc1050 -0.16   1       Aug
#> 204 2020-08-01    2 arc1047 - arc1048  0.56   1       Aug
#> 205 2020-08-01    2 arc1047 - arc1050  0.25   1       Aug
#> 206 2020-08-01    2 arc1048 - arc1050 -0.31   1       Aug
#> 207 2020-08-01    3 arc1045 - arc1046  0.59   1       Aug
#> 208 2020-08-01    3 arc1045 - arc1047  0.21   1       Aug
#> 209 2020-08-01    3 arc1045 - arc1048  0.84   1       Aug
#> 210 2020-08-01    3 arc1045 - arc1050  0.70   1       Aug
#> 211 2020-08-01    3 arc1046 - arc1047 -0.38   1       Aug
#> 212 2020-08-01    3 arc1046 - arc1048  0.25   1       Aug
#> 213 2020-08-01    3 arc1046 - arc1050  0.10   1       Aug
#> 214 2020-08-01    3 arc1047 - arc1048  0.63   1       Aug
#> 215 2020-08-01    3 arc1047 - arc1050  0.48   1       Aug
#> 216 2020-08-01    3 arc1048 - arc1050 -0.15   1       Aug
#> 217 2020-09-01    1 arc1045 - arc1046  0.75   1       Sep
#> 218 2020-09-01    1 arc1045 - arc1047  0.81   1       Sep
#> 219 2020-09-01    1 arc1045 - arc1050  0.95   1       Sep
#> 220 2020-09-01    1 arc1046 - arc1047  0.06   1       Sep
#> 221 2020-09-01    1 arc1046 - arc1050  0.21   1       Sep
#> 222 2020-09-01    1 arc1047 - arc1050  0.15   1       Sep
#> 223 2020-09-01    2 arc1045 - arc1046  0.76   1       Sep
#> 224 2020-09-01    2 arc1045 - arc1047  0.82   1       Sep
#> 225 2020-09-01    2 arc1045 - arc1050  0.87   1       Sep
#> 226 2020-09-01    2 arc1046 - arc1047  0.06   1       Sep
#> 227 2020-09-01    2 arc1046 - arc1050  0.11   1       Sep
#> 228 2020-09-01    2 arc1047 - arc1050  0.04   1       Sep
#> 229 2020-09-01    3 arc1045 - arc1046  1.02   1       Sep
#> 230 2020-09-01    3 arc1045 - arc1047  1.03   1       Sep
#> 231 2020-09-01    3 arc1045 - arc1050  1.16   1       Sep
#> 232 2020-09-01    3 arc1046 - arc1047  0.01   1       Sep
#> 233 2020-09-01    3 arc1046 - arc1050  0.14   1       Sep
#> 234 2020-09-01    3 arc1047 - arc1050  0.13   1       Sep
#> 235 2020-05-01    1 arc1047 - arc1050  0.03   1       May
#> 236 2020-05-01    2 arc1047 - arc1050  0.02   1       May
#> 237 2020-05-01    3 arc1047 - arc1050 -0.03   1       May

reprex 包于 2020-11-04 创建(v0.3.0)

devtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#>  setting  value                       
#>  version  R version 4.0.2 (2020-06-22)
#>  os       macOS Catalina 10.15.7      
#>  system   x86_64, darwin17.0          
#>  ui       X11                         
#>  language (EN)                        
#>  collate  en_AU.UTF-8                 
#>  ctype    en_AU.UTF-8                 
#>  tz       Australia/Melbourne         
#>  date     2020-11-04                  
#> 
#> ─ Packages ───────────────────────────────────────────────────────────────────
#>  package     * version date       lib source                     
#>  assertthat    0.2.1   2019-03-21 [1] CRAN (R 4.0.2)             
#>  backports     1.1.10  2020-09-15 [1] CRAN (R 4.0.2)             
#>  callr         3.5.1   2020-10-13 [1] CRAN (R 4.0.2)             
#>  cli           2.1.0   2020-10-12 [1] CRAN (R 4.0.2)             
#>  crayon        1.3.4   2017-09-16 [1] CRAN (R 4.0.2)             
#>  desc          1.2.0   2018-05-01 [1] CRAN (R 4.0.2)             
#>  devtools      2.3.2   2020-09-18 [1] CRAN (R 4.0.2)             
#>  digest        0.6.27  2020-10-24 [1] CRAN (R 4.0.2)             
#>  ellipsis      0.3.1   2020-05-15 [1] CRAN (R 4.0.2)             
#>  evaluate      0.14    2019-05-28 [1] CRAN (R 4.0.1)             
#>  fansi         0.4.1   2020-01-08 [1] CRAN (R 4.0.2)             
#>  fs            1.5.0   2020-07-31 [1] CRAN (R 4.0.2)             
#>  glue          1.4.2   2020-08-27 [1] CRAN (R 4.0.2)             
#>  highr         0.8     2019-03-20 [1] CRAN (R 4.0.2)             
#>  htmltools     0.5.0   2020-06-16 [1] CRAN (R 4.0.2)             
#>  knitr         1.30    2020-09-22 [1] CRAN (R 4.0.2)             
#>  magrittr      1.5     2014-11-22 [1] CRAN (R 4.0.2)             
#>  memoise       1.1.0   2017-04-21 [1] CRAN (R 4.0.2)             
#>  pkgbuild      1.1.0   2020-07-13 [1] CRAN (R 4.0.2)             
#>  pkgload       1.1.0   2020-05-29 [1] CRAN (R 4.0.2)             
#>  prettyunits   1.1.1   2020-01-24 [1] CRAN (R 4.0.2)             
#>  processx      3.4.4   2020-09-03 [1] CRAN (R 4.0.2)             
#>  ps            1.4.0   2020-10-07 [1] CRAN (R 4.0.2)             
#>  R6            2.5.0   2020-10-28 [1] CRAN (R 4.0.2)             
#>  remotes       2.2.0   2020-07-21 [1] CRAN (R 4.0.2)             
#>  rlang         0.4.8   2020-10-08 [1] CRAN (R 4.0.2)             
#>  rmarkdown     2.5     2020-10-21 [1] CRAN (R 4.0.2)             
#>  rprojroot     1.3-2   2018-01-03 [1] CRAN (R 4.0.2)             
#>  sessioninfo   1.1.1   2018-11-05 [1] CRAN (R 4.0.2)             
#>  stringi       1.5.3   2020-09-09 [1] CRAN (R 4.0.2)             
#>  stringr       1.4.0   2019-02-10 [1] CRAN (R 4.0.2)             
#>  testthat      2.3.2   2020-03-02 [1] CRAN (R 4.0.2)             
#>  usethis       1.6.3   2020-09-17 [1] CRAN (R 4.0.2)             
#>  withr         2.3.0   2020-09-22 [1] CRAN (R 4.0.2)             
#>  xfun          0.19.1  2020-10-31 [1] Github (yihui/xfun@621896e)
#>  yaml          2.2.1   2020-02-01 [1] CRAN (R 4.0.2)             
#> 
#> [1] /Library/Frameworks/R.framework/Versions/4.0/Resources/library
4

0 回答 0