我尝试在 pytorch 中通过 3 个不同的 GPU(GeForce GTX 1080 ti、tesla k80、tesla v100)加载 distilbert 模型。根据 pytorch cuda profiler,所有这些 GPU 的内存消耗都是相同的(534MB)。但是“nvidia-smi”显示了它们每个的不同内存消耗(GTX 1080 ti- 1181MB,tesla k80 - 898MB,tesla v100- 1714MB)。
我选择了v100,希望能容纳更多的进程,因为它有额外的内存。因此,与 k80 相比,我无法在 v100 中容纳更多进程。
版本:Python 3.6.11,transformers==2.3.0,torch==1.6.0
任何帮助,将不胜感激。
以下是 GPU 中的内存消耗。
----------------GTX 1080ti---------
2020-10-19 02:11:04,147 - CE - INFO - torch.cuda.max_memory_allocated() : 514.33154296875
2020-10-19 02:11:04,147 - CE - INFO - torch.cuda.memory_allocated() : 514.33154296875
2020-10-19 02:11:04,147 - CE - INFO - torch.cuda.memory_reserved() : 534.0
2020-10-19 02:11:04,148 - CE - INFO - torch.cuda.max_memory_reserved() : 534.0
“nvidia-smi”的输出:
2020-10-19 02:11:04,221 - CE - INFO - | ID | Name | Serial | UUID || GPU temp. | GPU util. | Memory util. || Memory total | Memory used | Memory free || Display mode | Display active |
2020-10-19 02:11:04,222 - CE - INFO - | 0 | GeForce GTX 1080 Ti | [Not Supported] | GPU-58d5d4d3-07a1-81b4-ba67-8d6b46e342fb || 50C | 15% | 11% || 11178MB | 1181MB | 9997MB || Disabled | Disabled |
-----特斯拉k80------
2020-10-19 12:15:37,030 - CE - INFO - torch.cuda.max_memory_allocated() : 514.33154296875
2020-10-19 12:15:37,031 - CE - INFO - torch.cuda.memory_allocated() : 514.33154296875
2020-10-19 12:15:37,031 - CE - INFO - torch.cuda.memory_reserved() : 534.0
2020-10-19 12:15:37,031 - CE - INFO - torch.cuda.max_memory_reserved() : 534.0
“nvidia-smi”的输出:
2020-10-19 12:15:37,081 - CE - INFO - | ID | Name | Serial | UUID || GPU temp. | GPU util. | Memory util. || Memory total | Memory used | Memory free || Display mode | Display active |
2020-10-19 12:15:37,081 - CE - INFO - | 0 | Tesla K80 | 0324516191902 | GPU-1e7baee8-174b-2178-7115-cf4a063a8923 || 50C | 3% | 8% || 11441MB | 898MB | 10543MB || Disabled | Disabled |
----------------特斯拉v100----------
2020-10-20 08:18:42,952 - CE - INFO - torch.cuda.max_memory_allocated() : 514.33154296875
2020-10-20 08:18:42,952 - CE - INFO - torch.cuda.memory_allocated() : 514.33154296875
2020-10-20 08:18:42,953 - CE - INFO - torch.cuda.memory_reserved() : 534.0
2020-10-20 08:18:42,953 - CE - INFO - torch.cuda.max_memory_reserved() : 534.0
“nvidia-smi”的输出:
2020-10-20 08:18:43,020 - CE - INFO - | ID | Name | Serial | UUID || GPU temp. | GPU util. | Memory util. || Memory total | Memory used | Memory free || Display mode | Display active |
2020-10-20 08:18:43,020 - CE - INFO - | 0 | Tesla V100-SXM2-16GB | 0323617004258 | GPU-849088a3-508a-1737-7611-75a087f18085 || 29C | 0% | 11% || 16160MB | 1714MB | 14446MB || Enabled | Disabled |