1

我尝试在 pytorch 中通过 3 个不同的 GPU(GeForce GTX 1080 ti、tesla k80、tesla v100)加载 distilbert 模型。根据 pytorch cuda profiler,所有这些 GPU 的内存消耗都是相同的(534MB)。但是“nvidia-smi”显示了它们每个的不同内存消耗(GTX 1080 ti- 1181MB,tesla k80 - 898MB,tesla v100- 1714MB)。

我选择了v100,希望能容纳更多的进程,因为它有额外的内存。因此,与 k80 相比,我无法在 v100 中容纳更多进程。

版本:Python 3.6.11,transformers==2.3.0,torch==1.6.0

任何帮助,将不胜感激。

以下是 GPU 中的内存消耗。

----------------GTX 1080ti---------

2020-10-19 02:11:04,147 - CE - INFO - torch.cuda.max_memory_allocated() : 514.33154296875
2020-10-19 02:11:04,147 - CE - INFO - torch.cuda.memory_allocated() : 514.33154296875
2020-10-19 02:11:04,147 - CE - INFO - torch.cuda.memory_reserved() : 534.0
2020-10-19 02:11:04,148 - CE - INFO - torch.cuda.max_memory_reserved() : 534.0

“nvidia-smi”的输出:

2020-10-19 02:11:04,221 - CE - INFO - | ID | Name                | Serial          | UUID                                     || GPU temp. | GPU util. | Memory util. || Memory total | Memory used | Memory free || Display mode | Display active |
2020-10-19 02:11:04,222 - CE - INFO - |  0 | GeForce GTX 1080 Ti | [Not Supported] | GPU-58d5d4d3-07a1-81b4-ba67-8d6b46e342fb ||       50C |       15% |          11% ||      11178MB |      1181MB |      9997MB || Disabled     | Disabled       |

-----特斯拉k80------

2020-10-19 12:15:37,030 - CE - INFO - torch.cuda.max_memory_allocated() : 514.33154296875
2020-10-19 12:15:37,031 - CE - INFO - torch.cuda.memory_allocated() : 514.33154296875
2020-10-19 12:15:37,031 - CE - INFO - torch.cuda.memory_reserved() : 534.0
2020-10-19 12:15:37,031 - CE - INFO - torch.cuda.max_memory_reserved() : 534.0

“nvidia-smi”的输出:

2020-10-19 12:15:37,081 - CE - INFO - | ID | Name      | Serial        | UUID                                     || GPU temp. | GPU util. | Memory util. || Memory total | Memory used | Memory free || Display mode | Display active |
2020-10-19 12:15:37,081 - CE - INFO - |  0 | Tesla K80 | 0324516191902 | GPU-1e7baee8-174b-2178-7115-cf4a063a8923 ||       50C |        3% |           8% ||      11441MB |       898MB |     10543MB || Disabled     | Disabled       |

----------------特斯拉v100----------

2020-10-20 08:18:42,952 - CE - INFO - torch.cuda.max_memory_allocated() : 514.33154296875
2020-10-20 08:18:42,952 - CE - INFO - torch.cuda.memory_allocated() : 514.33154296875
2020-10-20 08:18:42,953 - CE - INFO - torch.cuda.memory_reserved() : 534.0
2020-10-20 08:18:42,953 - CE - INFO - torch.cuda.max_memory_reserved() : 534.0

“nvidia-smi”的输出:

2020-10-20 08:18:43,020 - CE - INFO - | ID | Name                 | Serial        | UUID                                     || GPU temp. | GPU util. | Memory util. || Memory total | Memory used | Memory free || Display mode | Display active |
2020-10-20 08:18:43,020 - CE - INFO - |  0 | Tesla V100-SXM2-16GB | 0323617004258 | GPU-849088a3-508a-1737-7611-75a087f18085 ||       29C |        0% |          11% ||      16160MB |      1714MB |     14446MB || Enabled      | Disabled       |
4

0 回答 0