5

我正在创建这些时间序列图,特别是 stl 分解,并且已经设法将所有图合二为一。我遇到的问题是让它们像这里的解决方案一样并排显示。我在链接上尝试了解决方案,但它没有用,相反,我一直在顶部得到一个空图。我有四个时间序列图,并设法将它们输出到彼此的底部,但是我希望它们并排或两个并排,最后两个并排在底部。

然后对于 xaxis 上的日期,我已经尝试过使用ax.xaxis.set_major_formatter(DateFormatter('%b %Y')) ,但它不适用于下面的代码,因为 res.plot 函数不允许它。

我已经到处搜索了,但找不到解决问题的方法。我将不胜感激任何帮助。

数据

      Date     Crime
0   2018-01-01  149
1   2018-01-02  88
2   2018-01-03  86
3   2018-01-04  100
4   2018-01-05  123
... ... ...
664 2019-10-27  142
665 2019-10-28  113
666 2019-10-29  126
667 2019-10-30  120
668 2019-10-31  147

代码

from statsmodels.tsa.seasonal import STL
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import register_matplotlib_converters 
from matplotlib.dates import DateFormatter

register_matplotlib_converters()
sns.set(style='whitegrid', palette = sns.color_palette('winter'), rc={'axes.titlesize':17,'axes.labelsize':17, 'grid.linewidth': 0.5})
plt.rc("axes.spines", top=False, bottom = False, right=False, left=False)
plt.rc('font', size=13)
plt.rc('figure',figsize=(17,12))

#fig=plt.figure()
#fig, axes = plt.subplots(2, sharex=True)

#fig,(ax,ax2,ax3,ax4) = plt.subplots(1,4,sharey=True)

#fig, ax = plt.subplots()
#fig, axes = plt.subplots(1,3,sharex=True, sharey=True, figsize=(12,5))
#ax.plot([0, 0], [0,1]) 


stl = STL(seatr, seasonal=13)
res = stl.fit()
res.plot()    
plt.title('Seattle', fontsize = 20, pad=670)

stl2 = STL(latr, seasonal=13)
res2 = stl.fit()
res2.plot()  
plt.title('Los Angles', fontsize = 20, pad=670)

stl3 = STL(sftr, seasonal=13)
res3 = stl.fit()
res3.plot()  
plt.title('San Francisco', fontsize = 20, pad=670)

stl4 = STL(phtr, seasonal=13)
res4 = stl.fit()
res4.plot()  
plt.title('Philadelphia', fontsize = 20, pad=670)

#ax.xaxis.set_major_formatter(DateFormatter('%b %Y'))

情节之一 情节之一

整体输出
整体输出

4

1 回答 1

2

这是一个使用人工数据的例子。主要思想是将输出分组到DataFrames 中,然后使用 pandasplot函数绘制它们。

请注意,我必须将您的代码更改为使用stl2,stl3stl4拟合时。

from statsmodels.tsa.seasonal import STL
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import register_matplotlib_converters 
from matplotlib.dates import DateFormatter

register_matplotlib_converters()
sns.set(style='whitegrid', palette = sns.color_palette('winter'), rc={'axes.titlesize':17,'axes.labelsize':17, 'grid.linewidth': 0.5})
plt.rc("axes.spines", top=False, bottom = False, right=False, left=False)
plt.rc('font', size=13)
plt.rc('figure',figsize=(17,12))


idx = pd.date_range("1-1-2020", periods=200, freq="M")
seas = 10*np.sin(np.arange(200) * np.pi/12)
trend = np.arange(200) / 10.0
seatr = pd.Series(trend + seas + np.random.standard_normal(200), name="Seattle", index=idx)
latr = pd.Series(trend + seas + np.random.standard_normal(200), name="LA", index=idx)
sftr = pd.Series(trend + seas + np.random.standard_normal(200), name="SF", index=idx)
phtr = pd.Series(trend + seas + np.random.standard_normal(200), name="Philly", index=idx)

stl = STL(seatr, seasonal=13)
res = stl.fit()

stl2 = STL(latr, seasonal=13)
res2 = stl2.fit()

stl3 = STL(sftr, seasonal=13)
res3 = stl3.fit()

stl4 = STL(phtr, seasonal=13)
res4 = stl4.fit()

data = pd.concat([seatr, latr, sftr, phtr], 1)
trends = pd.concat([res.trend, res2.trend, res3.trend, res4.trend], 1)
seasonals = pd.concat([res.seasonal, res2.seasonal, res3.seasonal, res4.seasonal], 1)
resids = pd.concat([res.resid, res2.resid, res3.resid, res4.resid], 1)

fig, axes = plt.subplots(4,1)
data.plot(ax=axes[0])
trends.plot(ax=axes[1])
seasonals.plot(ax=axes[2])
resids.plot(ax=axes[3])

这会产生:

多个 STL 的输出

于 2020-10-30T09:21:05.783 回答