0

试图运行与网格搜索的 SCIKIT 用户指南相同的代码,但给出了错误。非常惊讶。

from sklearn.model_selection import GridSearchCV
from sklearn.calibration import CalibratedClassifierCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_moons
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
X,y=make_moons()
calibrated_forest=CalibratedClassifierCV(base_estimator=RandomForestClassifier(n_estimators=10))
paramgrid={'base_estimator_max_depth':[2,4,6,8]}
search=GridSearchCV(calibrated_forest,paramgrid,cv=5)
search.fit(X,y)

错误信息如下:

ValueError: Invalid parameter base_estimator_max_depth for estimator CalibratedClassifierCV(base_estimator=RandomForestClassifier(n_estimators=10)). Check the list of available parameters with `estimator.get_params().keys()`.

我尝试使用 Iris 数据集,它也给出了与上述相同的错误。

然后我使用 make_moon 数据集 X,y 并运行如下所示的随机分类器。

clf = RandomForestClassifier(n_estimators=10, max_depth=2)
cross_val_score(clf, X, y, cv=5)

得到如下输出。

array([0.8 , 0.8 , 0.9 , 0.95, 0.95])

看起来很奇怪,不确定发生了什么以及我错在哪里。请请求帮助。

4

1 回答 1

1

__注意 和 参数之间的双重分数base_estimator

from sklearn.model_selection import GridSearchCV
from sklearn.calibration import CalibratedClassifierCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_moons
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
X,y=make_moons()
calibrated_forest=CalibratedClassifierCV(base_estimator=RandomForestClassifier(n_estimators=10))
paramgrid={'base_estimator__max_depth':[2,4,6,8]}
search=GridSearchCV(calibrated_forest,paramgrid,cv=5)
search.fit(X,y)
GridSearchCV(cv=5,
             estimator=CalibratedClassifierCV(base_estimator=RandomForestClassifier(n_estimators=10)),
             param_grid={'base_estimator__max_depth': [2, 4, 6, 8]})
于 2020-10-14T06:10:26.990 回答