我正在使用 graphSAGE 解决节点分类问题。我是 GNN 的新手,所以我的代码基于 GraphSAGE 和 DGL 的分类任务[1]和[2]的教程。这是我正在使用的代码,它是一个 3 层 GNN,输入大小为 20,输出大小为 2(二进制分类问题):
class GraphSAGE(nn.Module):
def __init__(self,in_feats,n_hidden,n_classes,n_layers,
activation,dropout,aggregator_type):
super(GraphSAGE, self).__init__()
self.layers = nn.ModuleList()
self.dropout = nn.Dropout(dropout)
self.activation = activation
self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, aggregator_type))
for i in range(n_layers - 1):
self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, aggregator_type))
self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, aggregator_type))
def forward(self, graph, inputs):
h = self.dropout(inputs)
for l, layer in enumerate(self.layers):
h = layer(graph, h)
if l != len(self.layers) - 1:
h = self.activation(h)
h = self.dropout(h)
return h
modelG = GraphSAGE(in_feats=n_features, #20
n_hidden=16,
n_classes=n_labels, #2
n_layers=3,
activation=F.relu,
dropout=0,
aggregator_type='mean')
opt = torch.optim.Adam(modelG.parameters())
for epoch in range(50):
modelG.train()
logits = modelG(g, node_features)
loss = F.cross_entropy(logits[train_mask], node_labels[train_mask])
acc = evaluate(modelG, g, node_features, node_labels, valid_mask)
opt.zero_grad()
loss.backward()
opt.step()
if epoch % 5 == 0:
print('In epoch {}, loss: {}'.format(epoch, loss),)
每次我训练模型(不做任何改变),性能变化很大,准确率在 0.45 和 0.87 之间变化。如何保证结果的重现性?我尝试设置 pytorch seed torch.manual_seed()
, numpy seed 并将 drop out 设置为 0 但结果不断变化。这是正常的还是我错过了什么?